A Comparative Analysis of Psychometric Properties of Memory Tasks and Their Relationships with Higher-Order Thinking Skills: Recognition Versus Recall

Authors

  • Gözde Yılmaz Anadolu University, Faculty of Education, Eskisehir, Turkey
  • M. Bahadır Ayas Anadolu University, Faculty of Education, Eskisehir, Turkey
  • Uğur Sak Anadolu University, Faculty of Education, Eskisehir, Turkey

Keywords:

eşik hipotezi, zekâ, yaratıcılık, hayal gücü, threshold hypothesis, intelligence, creativity, imagination

Abstract

Abstract

In this study, it was aimed to examine the relation- ships between creative imagination and intelligence and to test the threshold hypothesis with younger students. The sample included 492 students aged 5-7 years. The Anadolu Sak Intelligence Scale was used to measure intelligence and Creative Imagination Cards were used to measure creativity. Firstly the re- lationship between intelligence and creative imagina- tion scores were analyzed, and then the correlation values of the lower and upper groups were com- pared. To determine the threshold at other IQ levels, different from 120 IQ, segmented regression analysis were performed. A weak relationship was found be- tween intelligence and creative imagination. The re- sults showed that the threshold theory was not sup- ported in younger children. Even, according to the segmented regression analysis, inverse threshold ef- fect was observed between creative imagination scores and general intelligence scores around 120 IQ. This is interpreted as the fact that in contrast to the threshold hypothesis, intelligence level above the 120 IQ, provides an advantage in the creative imagina- tion process for young age groups.

Öz

Bu çalışmanın amacı küçük yaş grubundaki öğrenci- lerde yaratıcı hayal gücü ve zekâ ilişkisinin incelen- mesi, eşik hipotezinin test edilmesidir. Çalışmada 5-7 yaş arası 492 öğrenci yer almıştır. Zekânın ölçü- münde Anadolu-Sak Zekâ Ölçeği; yaratıcılığın ölçü- münde Yaratıcı Hayal Gücü Kartları kullanılmıştır. Analiz aşamasında zekâ ve yaratıcı hayal gücü puan- ları arasındaki ilişkilere bakılmış; hipotezde belirtilen 120 IQ düzeyine göre alt ve üst grupların korelasyon değerleri karşılaştırılmıştır. Başka düzeylerde eşik değerin varlığını test etmek için ise parçalı regresyon analizi yapılmıştır. Çalışmada zekâ ve yaratıcı hayal gücü arasında zayıf bir ilişki bulunmuş; küçük yaş gruplarında eşik hipotezi desteklenmemiştir. Hatta parçalı regresyon analizinde yaratıcılık endeksleri ile genel zekâ düzeyi arasında 120 IQ civarında ters bir eşik değer etkisi gözlenmiştir. Bu durum eşik hipote- zinin aksine küçük yaş gruplarında sahip olunan zekâ bileşenlerinin, 120 IQ’nun üzerine çıkıldıkça ya- ratıcı hayal gücü sürecine avantaj sağladığı şeklinde yorumlanmıştır.

References

Abdelmoula, M., Chakroun, W., & Akrout, F. (2015). The effect of sample size and the number of items on reliability coefficients: Alpha and Rhô: A meta-analysis. International Journal of Numerical Methods and Applications, 13(1), 1–20. https://doi.org/10.17654/ijnmamar2015_001_020

Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003

Andrew, D. M., & Bird, C. (1938). A comparison of two new-type questions: recall and recognition. Journal of Educational Psychology, 29(3), 175–193. https://doi.org/10.1037/h0062394

Bower, G. H. (2000). A brief history of memory research. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 3–32). Oxford University Press.

Cleary, A. M. (2019). Dependent measures in memory research: From free recall to recognition. In H. Otani & B. L. Schwartz (Eds.), Handbook of research methods in human memory (1st ed., pp. 19–35). Routledge.

Chubala, C. M., Guitard, D., Neath, I., Saint-Aubin, J., & Surprenant, A. M. (2020). Visual similarity effects in immediate serial recall and (sometimes) in immediate serial recognition. Memory & Cognition, 48(3), 411–425. https://doi.org/10.3758/s13421-019-00979-5

Chubala, C. M., Neath, I., & Surprenant, A. M. (2019). A comparison of immediate serial recall and immediate serial recognition. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 73(1), 5–27. https://doi.org/10.1037/cep0000158

Chubala, C., Surprenant, A. M., Neath, I., & Quinlan, P. T. (2018). Does dynamic visual noise eliminate the concreteness effect in working memory? Journal of Memory and Language, 102, 97–114. https://doi.org/10.1016/j.jml.2018.05.009

Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). https://doi.org/10.1017/CBO9781139174909.006

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/s0140525x01003922

Dehn, M. J. (2008). Working memory and academic learning: Assessment and intervention (1st ed.). Wiley.

Dehn, M. J. (2015). Essentials of working memory assessment and intervention (1st ed.). Wiley.

DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Sage Publications, Inc.

Diedenhofen, B., & Musch, J. (2015). cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLOS ONE, 10(4), e0121945. https://doi.org/10.1371/journal.pone.0121945

Diedenhofen, B., & Musch, J. (2016). cocron: A web interface and R package for the statistical comparison of cronbach’s alpha coefficients. International Journal of Internet Science, 11(1), 51–60.

Dunn, O. J., & Clark, V. (1969). Correlation coefficients measured on the same individuals. Journal of the American Statistical Association, 64(325), 366–377. https://doi.org/10.1080/01621459.1969.10500981

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. https://doi.org/10.1037/0096-3445.128.3.309

Ertürk, S. (2013). Eğitimde "program" geliştirme (6. Basım). Edge akademi.

Field (2020, March 1). The brain learns in unexpected ways. Scientific American. https://www.scientificamerican.com/article/the-brain-learns-in-unexpected-ways/

Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7(4), 237–241. https://doi.org/10.1111/j.1467-9280.1996.tb00366.x

Gatewood, R. D., Feild, H. S., & Barrick, M. R. (2011). Human resource selection (7th ed.). Cengage Learning.

Gisselgård, J., Uddén, J., Ingvar, M., & Petersson, K. M. (2007). Disruption of order information by irrelevant items: A serial recognition paradigm. Acta Psychologica, 124(3), 356–369. https://doi.org/10.1016/j.actpsy.2006.04.002

Hasan, M., Kanna, M. S., Jun, W., Ramkrishnan, A. S., Iqbal, Z., Lee, Y., & Li, Y. (2019). Schema‐like learning and memory consolidation acting through myelination. The FASEB Journal, 33(11), 11758–11775. https://doi.org/10.1096/fj.201900910r

Heacox, D., & Cash, R. M. (2014). Differentiation for gifted learners: Going beyond the basics. Free Spirit Publishing.

Heitz, R. P., Unsworth, N., & Engle, R. W. (2005). Working memory capacity, attention control, and fluid intelligence. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 61–77). Sage Publications.

Hittner, J. B., May, K., & Silver, N. C. (2003). A Monte Carlo evaluation of tests for comparing dependent correlations. The Journal of General Psychology, 130(2), 149–168. https://doi.org/10.1080/00221300309601282

Ho, R. (2014). Handbook of univariate and multivariate data analysis with IBM SPSS (2nd ed.). CRC Press.

Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 66–71. https://doi.org/10.1037/0033-2909.131.1.66

Kintsch, W. (1970). Models for free recall and recognition. In D. A. Norman (Ed.), Models of human memory (pp. 331–373). https://doi.org/10.1016/b978-0-12-521350-9.50016-4

Kyllonen, P. C. (1993). Aptitude testing inspired by information processing: A test of the four-sources model. The Journal of General Psychology, 120(3), 375–405. https://doi.org/10.1080/00221309.1993.9711154

Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389–433. https://doi.org/10.1016/s0160-2896(05)80012-1

Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8(4), 355–362. https://doi.org/10.1177/1948550617697177

Liu, H. Y., & Weng, L. J. (2009). An effect size index for comparing two independent alpha coefficients. British Journal of Mathematical and Statistical Psychology, 62(2), 385–400. https://doi.org/10.1348/000711008X315518

Margolis, L. J. (1992). Do recall and recognition rely on qualitatively different processes? [Doctoral dissertation, The American University]. American University Digital Research Archive. https://dra.american.edu/islandora/object/thesesdissertations:2673

Murray, T., & Arroyo, I. (2002, June 2-7). Toward measuring and maintaining the zone of proximal development in adaptive instructional systems. Intelligent Tutoring Systems, 6th International Conference, ITS 2002, Biarritz, France and San Sebastian, Spain. https://doi.org/10.1007/3-540-47987-2_75

Nutley, S. B., & Söderqvist, S. (2017). How is working memory training likely to influence academic performance? Current evidence and methodological considerations. Frontiers in Psychology, 8, 1–12. https://doi.org/10.3389/fpsyg.2017.00069

Radvansky, G. A. (2017). Formal models of memory. In Human memory (3rd ed., pp. 325–355). Routledge. https://doi.org/10.4324/9781315542768-10

Ramseyer, G. C. (1979). Testing the difference between dependent correlations using the Fisher Z. The Journal of Experimental Education, 47(4), 307-310. https://doi.org/10.1080/00220973.1979.11011698

Sak, U., Bal-Sezerel, B., Ayas, M. B., Tokmak, F., Özdemir, N. N., Demirel-Gürbüz, Ş., & Öpengin, E. (2016). Anadolu Sak Zeka Ölçeği: ASİS uygulayıcı kitabı. Anadolu Üniversitesi ÜYEP Merkezi, Eskişehir.

Schneider, W. J. ve McGrew, K. S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment (4th ed., pp. 73–163). Guilford Press.

Schwartz, B. L. (2018). Introduction to the study of memory. In B. L. Schwartz (Ed.), Memory: Foundations and applications (3rd ed., pp. 1–33). Sage.

Shevlin, M., Miles, J. N. V., Davies, M. N. O., & Walker, S. (2000). Coefficient alpha: A useful indicator of reliability? Personality and Individual Differences, 28(2), 229–237. https://doi.org/10.1016/s0191-8869(99)00093-8

Silver, N. C., Hittner, J. B., & May, K. (2004). Testing dependent correlations with nonoverlapping variables: A monte carlo simulation. The Journal of Experimental Education, 73(1), 53-69. https://doi.org/10.3200/jexe.71.1.53-70

Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability - and a little bit more. Intelligence, 30(3), 261–288. https://doi.org/10.1016/s0160-2896(01)00100-3

Tse, C.-S., Li, Y., & Altarriba, J. (2011). The effect of semantic relatedness on immediate serial recall and serial recognition. Quarterly Journal of Experimental Psychology, 64(12), 2425–2437. https://doi.org/10.1080/17470218.2011.604787

Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104–132. https://doi.org/10.1037/0033-295X.114.1.104

VanTassel-Baska, J. (2007). An overview of alternative assessment measures for gifted learners and the issues that surround their use. In J. VanTassel-Baska (Ed.), Alternative assessments with gifted and talented students (pp. 1–15). Prufrock Press.

Vogel, S., & Schwabe, L. (2016). Learning and memory under stress: Implications for the classroom. Npj Science of Learning, 1–10. https://doi.org/10.1038/npjscilearn.2016.11

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press.

Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12(4), 399–413. https://doi.org/10.1037/1082-989x.12.4.399

Downloads

Published

2021-05-20

How to Cite

Yılmaz, G. ., Ayas, M. B. ., & Sak, U. . (2021). A Comparative Analysis of Psychometric Properties of Memory Tasks and Their Relationships with Higher-Order Thinking Skills: Recognition Versus Recall . TALENT, 10(2), 162–175. Retrieved from https://theeducationjournals.com/index.php/talent/article/view/87

Issue

Section

Research Article