A Comparison of Gifted and non- Gifted Students’ Satisfaction about the Use of Selective Problem Solving Model in Mathematics

Authors

  • Fatih Karabacak Adnan Menderes University, Faculty of Education, Aydın, Turkey
  • Nilgün Kirişçi Adnan Menderes University, Faculty of Education, Aydın, Turkey

Keywords:

üstün zekâlı öğrenciler, yaratıcılık, matematiksel yaratıcılık, Seçici Problem Çözme Tekniği

Abstract

Abstract

Selective Problem Solving (SPS) was a model for teaching creative problem solving. The purpose of the SPS is to develop creative thinking and problem solv- ing ability. The aim of this research was to investigate gifted and non-gifted students’ satisfaction about its use in mathematics. The research was conducted with 74 seventh-grade gifted and average-ability students in Eskisehir. The SPS Satisfaction Scale was adminis- tered to students after they participated eight sessions of Math class during which the SPS model was used to differentiate the math curriculum. The results showed that both group had a high level of satisfac- tion about the use of SPS in their math classes. There was not a significant difference between gifted and average-ability students’ perceptions. Gender did not make a difference. Satisfaction levels of both groups were significantly above the test value.

Key Words: gifted students, creativity, mathematical creativity, Selective Problem Solving Model

Öz

Seçici Problem Çözme Tekniği bir yaratıcı problem çözme tekniğidir. Yaratıcı düşünme ve yaratıcı prob- lem çözme yeteneğini geliştirmeyi amaçlar. Bu araş- tırmanın amacı, matematik dersinde Seçici Problem Çözme (SPÇ) Tekniği ile eğitim almış üstün zekâlı ve normal zekâ düzeyindeki öğrencilerin, memnuniyetdüzeylerindeki farklılığı cinsiyet ve grup değişkenine göre belirlemektir. Araştırma Eskişehir ilinde, 7. sınıfa devam eden üstün zekâlı ve normal zekâ düzeyindeki74 öğrenci ile gerçekleştirilmiştir. Sekiz oturumdan oluşan SPÇ Tekniği ile yürütülen matematik dersleri- nin ardından SPÇ Tekniği Memnuniyet Ölçeği uygu- lanmıştır. Verilerin analizi sonucunda; üstün zekâlı öğrenciler ile normal zekâ düzeyindeki öğrenciler ara- sında SPÇ Tekniği memnuniyet düzeylerinde cinsiyet ve grup değişkenlerine bağlı olarak anlamlı bir fark çıkmamıştır. Her iki grubun da memnuniyet düzeyi istatiksel olarak anlamlı ve test değerinin üzerin-de- dir.

 

References

Akbulut, Y. (2010). Sosyal bilimlerde SPSS uygulamaları. İstanbul: İdeal Kültür.

Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357-376.

Amabile, T. M. (2013). Componential theory of creativity. In E. H. Kessler (Ed.), Encyclopedia of management theory, (pp. 134-138). London: Sage Publications.

Bal Sezerel, B. (2011). Seçici problem çözme (SPÇ) tekniği’nin ilköğretim 6. ve 7. sınıf öğrencilerine yönelik matematik eğitimindeki sosyal geçerliğinin araştırılması (Yayınlanmamış yüksek lisans tezi). Anadolu Üniversitesi Eğitim Bilimleri Enstitüsü, Eskişehir.

Bal-Sezerel, B., & Sak, U. (2013). The Selective Problem Solving Model (SPS) and its social validity in solving mathematical problems. The International Journal of Creativity & Problem Solving, 23(1), 71-86.

Becker, J. P., & Shimada, S. (1997). The open-ended approach: A new proposal for teaching mathematics. Reston, VA: National Council of Teachers of Mathematics.

Brown, S. I., & Walter, M. I. (2005). The art of problem posing. New York: Psychology Press.

Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., ve Demirel, F. (2015). Bilimsel araştırma yöntemleri (19.baskı). Ankara: Pegem.

Callahan, C. M. (1996). A critical self-study of gifted education: Healthy practice, necessary evil, or sedition? Talents and Gifts, 19(2), 148-163.

Chamberlin, S. A., & Moon, S. (2005). Model-eliciting activities: An introduction to gifted education. Journal of Secondary Gifted Education, 17, 37–47.

Cho, S. (2003). Creative problem solving in science: Divergent, convergent, or both? In U. Anuruthwong & C. Piboonchol (Eds.), 7th Asia-Pacific Conference on Giftedness (pp. 169–174). Bangkok, Thailand: October Printing.

Davidson, J. E., & Sternberg, R. J. (1984). The role of insight in intellectual giftedness. Gifted Child Quarterly, 28, 58-64.

Davis, G. A., Rimm, S. B., & Siegle, D. (2014). Education of the gifted and talented (6th Ed.). London: Pearson Education Limited.

mathematics. Unpublished manuscript, Department of Special Education, Anadolu University, Turkey.

Sak, U. (2011). Selective problem solving (SPS): A model for teaching creative problem solving. Gifted Education International, 27(3), 349-357.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan.

Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.

Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM—The International Journal on Mathematical Education, 29(3), 75–80.

Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Education, 17, 20–36.

Sternberg, R. J., & Williams, W. M. (1996). How to develop student creativity. Alexandria, VA: Association of Supervision and Curriculum Development.

Sternberg, R. J., &Lubart, T. I. (1995). An investment theory of creativity and its development. Human Development, 34(1), 1-31.

Torrance, E. (1972). Can we teach children to think creatively? The Journal of Creative Behavior, 6(2), 114-143.

Treffinger, D. J., & Isaksen, S. G. (2005). Creative problem solving: The history, development, and implications for gifted education and talent development. Gifted Child Quarterly, 49(4), 342- 353.

Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing creativity: a guide for educators. Storrs, CT: National Research Center on the Gifted and Talented.

Treffinger, D., & Feldhusen, J. (1996). Talent recognition and development: Successor to gifted education. Journal for the Education of the Gifted, 19, 181-193.

Urban, K. K. (2003). Toward a componential model of creativity. In D. Ambrose, L. M. Cohen, & A. J. Tannenbaum (Eds.), Creative intelligence: Toward theoretic integration (pp. 81-112). Cresskill, NJ: Hampton Press.

Yuan, X., & Sriraman, B. (2010). An exploratory study of relationships between students’ creativity and mathematical problem-posing abilities. In B. Sriraman & K. Lee (Eds.), The elements of creativity and giftedness in mathematics (pp. 5-28). Rotterdam: Sense Publishers.

Downloads

Published

2021-05-20

How to Cite

Karabacak, F. ., & Kirişçi, N. (2021). A Comparison of Gifted and non- Gifted Students’ Satisfaction about the Use of Selective Problem Solving Model in Mathematics. TALENT, 9(2), 131–144. Retrieved from https://theeducationjournals.com/index.php/talent/article/view/75

Issue

Section

Research Article