Identification of Mathematical Talent: Similarity and Relation based Model of Thinking in Math

Authors

  • Şule Güçyeter Uşak University, Faculty of Education, Special Education Division, Uşak, Turkey

Keywords:

matematiksel yetenek, matematikte üstün yetenekli, tanılama, benzerlik, ilişki

Abstract

Abstract

There are many debates about identification of math- ematically talented students. In this study, a model called as Similarity and Relation based Model of Thinking in Math, which was developed to identify and educate mathematically gifted and talented stu- dents was explained. The model consisted of three main structures as problem solving, problem posing and problem comparing. Each of these structures has two sub-structures based on similarity and relation concepts, which are called as similarity based problem solving, relation based problem solving, similarity based problem posing, relation based problem pos- ing, finding similar problems and finding related problems. The model was developed on the basis of how mathematicians work and the core skills mathe- maticians use. In the model, analogical thinking which is one of the core cognitive abilities is consid- ered as similarity and relation based thinking. This model is based on one of the core cognitive abilities, with this respect it differs from the other models in the literature. By using this model, paper-pencil tests, al- ternative assessment tools for identification of mathe- matically talented students can be developed and ed- ucational activities and programs for mathematically talented students can be developed.

Key Words: mathematical talent, identification, simi- larity, relation

Öz

Matematikte üstün yeteneklileri tanılamayla ilgili alan yazında çeşitli tartışmalar mevcuttur. Bu çalış- mada matematik alanında üstün yetenekli öğrencile- rin tanılanma ve eğitim sürecinde kullanılmak ama- cıyla geliştirilen Matematikte Benzerlik ve İlişki Te- melli Düşünme Modeli tanıtılmıştır. Model problem çözme, problem kurma ve problemleri karşılaştırma olarak adlandırılan üç ana yapı ve bu yapıların her bi- rinde benzerlik ve ilişki kavramları temel alınarak oluşturulmuş benzerliğe dayalı problem çözme, iliş- kiye dayalı problem çözme, benzerliğe dayalı prob- lem kurma, ilişkiye dayalı problem kurma, benzer problemleri bulma ve ilişkili problemleri bulma ola- rak adlandırılan altı alt bileşenden oluşmaktadır. Mo- del matematikçilerin nasıl çalıştığı ve matematiksel yetenek için çekirdek olan becerilerin neler olduğu- nun araştırılması üzerine geliştirilmiştir. Modelde çe- kirdek bilişsel becerilerden biri olan analojik dü- şünme, benzerlik ve ilişki temelli düşünme olarak ele alınmıştır. Model matematiksel yeteneği tanılamada çekirdek bir beceriyi temel alması yönüyle alan yazın- daki diğer modellerden farklılaşmaktadır. Model kul- lanılarak matematikte üstün yeteneklileri tanılamada kağıt kalem testleri, alternatif değerlendirme araçları ile eğitsel etkinlik ve programların da geliştirilmesi umulmaktadır.

 

References

Choi, K. M. (2009). Characteristics of Korean international mathematical Olympiad (IMO) win- from ners' and various developmental influences (Order No. 3386133). Available ProQuest Dissertations & Theses Global. (304862437). Retrieved http://search.proquest.com/docview/304862437?accountid=11637 from

Devlin, K. (2000). The math gene: How mathematical thinking evolved and why numbers are like gossip. NY: Basic Books.

Davidson, J. E., & Sternberg, R. J. (1984). The role of insight in intellectual giftedness. Gifted Child Quarterly, 28(2), 58-64.

Gavin, M. K., & Adelson, J. L. (2008). Mathematics, elementary. In J., Plucker & C. Callahan (Eds). Critical issues and practices in gifted education: What the research says (pp.367-394). Waco, Tx: Prufrock Press.

Gust, H., Krumnack, U., Kühnberger, K.-U, & Schwering, A. (2008). Analogical reasoning: A core

of cognition. Zeitschrift für Künstliche Intelligenz (KI), Themenheft KI und Kognition (1), 8-12.

Hardy, G. H. (1999). Bir matematikçinin savunması (Çev. N. Arık). Ankara: TÜBİTAK Popüler Bilim Kitapları.

Hofstadter, D. R. (2001). Analogy as the core of the cognition. In D. Genter, K. J. Holyoak, & B. Kokinov (Eds.), The Analogical Mind: Perspectives from Cognitive Science (pp. 499-538). Cambridge MA: The MIT Press/Bradford Book.

Keating, D. P., & Stanley, J. C. (1973). Discovering quantitative precocity. Presented at AREA, New Orleans.

Kim, H., Cho, S., & Ahn, D. (2003). Development of mathematical creative problem solving abil- ity test for identification of the gifted in math. Gifted Education International, 18, 164-174. doi:10.1177/026142940301800206

King, J. (2006). Matematik sanatı (Çev. N. Arık), Ankara: Tübitak Yayınları.

Krutetskii, V. A. (1976). The Psychology of Mathematical Abilities in Schoolchildren (J. Kilpatrick & I. Wirszup, Eds.). (J. Teller, Trans.). Chigo: University of Chicago Press.

Leikin, R. (2009). Bridging research and theory in mathematics education with research and theory

in creativity and giftedness. In. R. Leikin, A. Berman, & B. Koichu (Eds.)

mathematics and education of gifted students (pp. 385-411). Rotterdam: Creativity in Sense Publishers.

Livne, N. (2001). Giftedness in mathematics as a bidimensional phenomenon: Theoretical definition and psychometric assessment of levels of academic ability and levels of mathematics. Unpublished doctoral dissertation. Tel Aviv University, Israel. creative ability in

Livne, N. L., & Milgram, R. M. (2006). Academic versus creative abilities in mathematics: Two components the same construct? Creative Research Journal, 18(2), 192-212.

Mandacı Şahin, S. (2007). 8. Sınıf öğrencilerinin matematik gücünün belirlenmesi. Yayınlanmamış dok- tora tezi, Karadeniz Teknik Üniversitesi, Trabzon.

MEB. (2009). İlköğretim matematik dersi 1-5 sınıflar öğretim programı. Ankara: MEB Yay.

Miller, R. C. (1990). Discovering math talent. Retrieved from ERIC database.

Napoles Valdes, J. E. (2012). Some reflections on mathematics and

mathematicians: Sim

ple questions, complex answers. The MathematiEnthusiast (TME), 19(1&2), 221-232.

NCTM (1989). Evaluation: Standart 4- Mathematical power. http://www.fayar.net/east/Teac- her.web/Math/Standards/Previous/CurrEvStdevals4.htm adresinden 10.10.2014 tarihine alınmıştır.

Niederer, K. Irwin, R. J. Irwin, K. C., & Reilly, I. L. (2003). Identification of mathematically gifted children in New Zealand. High Ability Studies, 14(1), 71-84.

Osborn, H. (1983). The assessment of mathematical abilities. Educational Research, 25(1), 28-40. doi:10.1080/0013188830250104

PISA (2011). PISA Türkiye 2011 .http://pisa.meb.gov.tr/wp

content/uploads/2013/07/PISA ki

tab%C4%B1.pdf adresinden 10.10.2014 tarihinde alınmıştır.

Poincare, H. (1907). The value of science (G. B. Halsted Trans.). NY: The Science Press.

Poincare, H. (1989). Bilim ve metot (Çev. H. R. Atademir & S. Ölçen). İstanbul: Milli Eğitim Basımevi.

Polya, G. (1954). Induction and analogy in mathematics: Volume I of mathematics and plausible reasoning. Princeton, NJ: Princeton University Press.

Pitta-Pantazi, D., Christou, C., Kontoyianni, K., & Kattou, M. (2011). A model of mathematical giftedness: Integrating natural, creative, and mathematical ability. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39-54. doi:10.1080/14926156.2011. 548900

Russell, B. (2010). Principles of mathematics. Abingdon, Oxon: Routledge.

Sak, U. (2005).M3: The three-mathematical minds model for the identification of mathematically gifted students (Order No. 3162062). Available from ProQuest Dissertations & Theses Global. (305022984). Retrieved from http://search.proquest.com/docview/305022984?ac- countid=11637

Sak, U., Karabacak, F., Kılıç, A., & Öksüz, C. (2010). MBE3: Üstün zekalı öğrencilerin tanılan- masında ve eğitimlerinde üçlü matematiksel ve bilimsel tanılama ve öğretim yetenek modeli. Proje no:107K059. http://www.tuzyeksav.org.tr/Uploads/pdf/proje-mbe3-ustun-zekali adresinden alınmıştır.

Schoenfeld, A. H. (2007). What is mathematical proficiency and how can it be assessed? In A. H. Schoenfeld (Ed.), Assessing mathematical proficiency (pp. 59-73). Cambridge, UK: Cam- bridge University Press.

Sheffield, L. J. (1994). The development of gifted and talented mathematics studentds and the National Council of Teachers of Mathematics Standards. (Report No. RBDM 9404). Storrs: National Research Center on the Gifted and Talented, University of Connecticut. (ERIC Docu- ment Reproduction Service No. ED388011).

Sriraman, B. (2005). Are Mathematical Giftedness and Mathematical Creativity Synonyms? A theoretical analysis of constructs. Journal of Secondary Gifted Education, 17(1), 20-36.

Sriraman, B. (2009a). Mathematically precocious. B. A. Kerr (Ed.), Encyclopedia of giftedness, creativ- ity and talent (pp. 547-550). Thousand Oaks, CA: Sage Publications.

Sriraman, B. (2009b). Mathematical intelligence. In B. A. Kerr (Ed.), Encyclopedia of giftedness, crea- tivity and talent (pp. 544-547). Thousand Oaks, CA: Sage Publications.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327-352.

Umay, A. (2002). Öteki matematik. Hacettepe Eğitim Fakültesi Dergisi, 23, 275-281.

Yıldırım, C. (2008a). Matematiksel düşünme (2. basım). İstanbul: Remzi Kitabevi.

Yıldırım, C. (2008b). Bilimsel düşünme yöntemi (2. basım). İstanbul: İmge Kitabevi Yayınları.

Wilmott, B. A. (1983). The design, administration and analysis of an instrument which identifies mathematically gifted students in grade four, five and six. (Order No. 8324673, Univer- sity of Illinois at Urbana-Champaign). ProQuest Dissertations and Theses, from http://search.proquest.com/docview/303163539?accountid=11637 Retrieved

Downloads

Published

2021-05-20

How to Cite

Güçyeter, Şule . (2021). Identification of Mathematical Talent: Similarity and Relation based Model of Thinking in Math . TALENT, 8(2), 181–199. Retrieved from https://theeducationjournals.com/index.php/talent/article/view/67

Issue

Section

Research Article