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Abstract

Post-hoc explanation methods are widely used to interpret complex machine learning models, yet the fidelity of
these explanations how accurately they reflect the model’s true reasoning remains difficult to assess. Explanations
that are easy to understand may oversimplify or distort the decision logic, while highly detailed explanations may
be accurate but unusable in practice. This study presents a structured evaluation framework for measuring
explainability fidelity through local sensitivity testing, global attribution coherence, representation-space
alignment, and causal influence validation. Experimental results show that many commonly used attribution
techniques generate persuasive but mechanistically incorrect explanations, particularly in deep models with
distributed internal representations. Methods that incorporate causal perturbation and representation-level
reasoning exhibit significantly higher fidelity. Additionally, deployment tests in cloud-integrated Oracle APEX
environments reveal that explanation stability depends on system execution context, reinforcing that fidelity is
both a modeling and operational concern. The findings provide a foundation for selecting and validating post-hoc
interpretability techniques in high-stakes enterprise applications.
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1. Introduction

Explainability has become a central requirement in modern Al systems, particularly as they are deployed in
domains where decisions carry operational, financial, or ethical implications. While numerous post-hoc
interpretation techniques such as SHAP, LIME, saliency mappings, feature attributions, and counterfactual
reasoning have been developed to approximate the internal logic of complex models, the fidelity of these
explanations remains uncertain. Fidelity refers to how accurately an explanation reflects the model’s actual
decision-making process rather than providing a plausible but misleading narrative, a challenge comparable to
interpreting correlated health indicators where apparent simplicity can obscure underlying causal structure [1].
Poor fidelity can create a false sense of transparency, leading stakeholders to trust or act upon model outputs
without understanding their true basis. Similar risks have been observed in experimental protection studies, where
surface-level indicators failed to capture deeper system behavior, resulting in overconfident conclusions [2].
Therefore, evaluating the faithfulness of post-hoc explanations is essential to ensuring that interpretability
methods enhance, rather than distort, user understanding.

Existing explainability approaches often prioritize interpretability the ease with which an explanation can be
understood over fidelity, which determines whether the explanation truthfully represents model reasoning. This
mirrors challenges in alternative experimental modeling, where simplified representations improve accessibility
but may diverge from actual system dynamics under realistic conditions [3]. Increasing interpretability by
simplifying explanations may remove critical model dependencies, while maximizing fidelity may produce
explanations too complex for human use. This tradeoff underscores the need for structured evaluation metrics that
balance clarity and accuracy without artificially inflating user confidence in the model, a concern also evident in
systems exhibiting multiple interacting causal factors [4]. The challenge is further amplified in deep neural
architectures, where distributed representations and non-linear feature interactions make direct causal tracing
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difficult, resembling high-dimensional biological systems with interacting resistance and adaptation mechanisms

[5].

High-stakes applications, such as financial supervision dashboards, autonomous policy enforcement engines, and
enterprise decision-support platforms, rely on explainable Al to maintain human oversight. In environments
where Oracle APEX serves as the orchestration layer for Al-driven recommendations, explanation fidelity directly
affects workflow reliability, audit traceability, and governance assurance. Prior work on low-code enterprise
application development highlights that transparency and predictability are essential to sustaining user trust when
automated insights influence operational decisions [6]. Low-fidelity explanations can obscure systemic bias or
hidden failure conditions, leading to incorrect decisions. Studies in fault-tolerant enterprise workflow design
further demonstrate that unreliable interpretability mechanisms can propagate instability across dependent
processes [7].

User trust and explainability fidelity are also shaped by how explanations are perceived within structured
interaction environments. Research on educational and institutional systems shows that perceived coherence,
clarity, and consistency strongly influence confidence in system outputs, even when underlying complexity
remains high [8]. These findings translate directly to enterprise Al platforms, where explainability failures often
result in workflow abandonment, decision hesitation, or resistance to automation.

Data infrastructure further affects explanation fidelity. Cloud-based Oracle database ecosystems introduce
distributed workload execution, adaptive optimization behavior, and variable data access paths that influence both
model inference and explanation generation. In such environments, the ability to detect, trace, and reproduce
decision rationales becomes critical. Practices drawn from molecular detection and characterization studies
emphasize the importance of precise attribution and reproducibility, providing a useful parallel for designing
auditable and faithful explainability mechanisms in Al systems [9].

This study presents a structured framework for evaluating explainability fidelity in post-hoc interpretation
methods applied to complex models deployed in cloud-integrated enterprise environments. The objective is to
define fidelity metrics that are model-agnostic, platform-relevant, and behaviorally grounded, ensuring that
explanations accurately convey how decisions are generated rather than providing simplified or misleading
substitutes. By integrating representation-level consistency checks, perturbation sensitivity analysis, and
workflow-context alignment evaluation, the framework aims to produce explainability assessments that are both
scientifically rigorous and operationally meaningful.

2. Methodology

The methodology for evaluating explainability fidelity in post-hoc interpretation models was structured around a
multi-layer assessment process that examined explanation behavior, internal model representation alignment,
output stability under perturbation, and interpretability usability under operational deployment. The objective was
to measure how accurately an explanation reflects the true internal logic of the model, rather than how intuitively
understandable or visually appealing the explanation appears. To achieve this, the methodology isolates the
model’s predictive behavior, internal feature representations, and explanation generation pathways to identify
where alignment holds and where it breaks down.

The first stage involved establishing a set of baseline model behaviors. Models were trained or selected with
varying architectural complexity, including shallow interpretable models and deep neural networks with non-
linear representation hierarchies. Each model was tested on a set of controlled input conditions to produce
reference outputs. These reference outputs served as the ground behavior against which all post-hoc explanations
would be evaluated. This controlled setup ensured that explanation fidelity could be measured relative to the
model’s stable predictive behavior rather than external correctness benchmarks.
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The second stage focused on explanation generation across multiple interpretation methods. For each model,
interpretation outputs were generated using both feature attribution—based methods and representation-level
interpretability methods. The outputs included saliency distributions, feature importance rankings, counterfactual
region boundaries, and surrogate-model summaries. Each explanation was stored in a structured representation
format that enabled comparison at both the individual sample level and aggregated dataset level. This ensured
direct comparability between different explainability approaches.

The third stage evaluated local fidelity, measuring how well an explanation aligned with model behavior when
small perturbations were applied to input features. Controlled perturbation testing was conducted by adjusting
feature values across structured increments and observing the degree to which explanation outputs changed
proportionally to predictive impact. Misalignment between explanation shift and model output shift indicated low
local fidelity. This approach focused on the stability and truthfulness of explanation granularity rather than
subjective interpretive clarity.

The fourth stage measured global fidelity, examining how explanation behaviors aggregated across the entire
dataset. This involved assessing whether the high-importance features identified by explanations corresponded to
the model’s dominant decision factors across all input variation. Global fidelity analysis was used to detect
whether explanation methods systematically biased feature attribution or masked deeper representation
dependencies. In cases where model reasoning was distributed across latent spaces, low global fidelity was
reflected by inconsistent importance rankings or unstable attribution dominance patterns.

The fifth stage introduced representation-space alignment analysis, where internal embeddings from the model
were compared with the structural patterns reflected in the explanations. This involved measuring similarity
between model latent clusters and explanation-derived conceptual groupings. If explanation outputs grouped data
instances differently from the model’s internal structures, the method was determined to have limited structural
fidelity. This stage was essential for evaluating models where reasoning pathways were not easily translatable to
surface-level features.

The sixth stage addressed causal influence validation. Using controlled counterfactual re-generation, specific
input feature dependencies were isolated and inverted to test whether explanations accurately reflected the causal
contribution of those features. If explanations highlighted a feature as being influential but output behavior did
not change meaningfully when the feature was manipulated, the explanation was considered to exhibit non-causal
attribution bias. This stage distinguished between correlation and mechanistic influence within explanation
fidelity.

The seventh stage assessed output stability under operational deployment conditions. Explanations were
generated under varying computational load, distributed execution contexts, UI call patterns, and memory state
persistence conditions to evaluate whether explanation consistency degraded when integrated into enterprise
workflow environments. This ensured that fidelity measures reflected real deployment behavior rather than
idealized offline interpretability conditions.

The final stage synthesized the fidelity indicators into a composite scoring framework. Local stability, global
attribution coherence, representation alignment, causal influence correspondence, and deployment robustness
were normalized into comparative scoring indices. This allowed systematic benchmarking of explanation methods
across models, data domains, and operational scenarios. The resulting evaluation provided both per-method
fidelity diagnostics and actionable interpretation reliability profiles for practical decision-support use.

3. Results and Discussion

The results showed clear differences in explanation fidelity across interpretation methods and model architectures.
Models with shallow decision boundaries, such as linear classifiers, exhibited high fidelity across all
interpretation techniques because their reasoning pathways were directly traceable to interpretable
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representations. In contrast, deep neural models with non-linear feature composition demonstrated significant
variation in fidelity depending on whether the explanation method targeted surface-level feature effects or deeper
latent structure. This confirms that explanation fidelity is not primarily a property of the explanation method itself
but a reflection of how well the method aligns with the model’s internal representation strategy.

Local fidelity testing revealed that perturbation-based methods provided reliable reflection of short-range decision
sensitivity but struggled when feature influences were distributed across multiple representation layers. In
scenarios where model reasoning depended on hierarchical abstractions, local perturbation attribution tended to
fragment importance weights, making explanations appear noisy or unstable. Representation-steering
interpretation techniques, however, maintained more consistent fidelity by tracing semantic shifts in latent
embedding space rather than surface-level input gradients. This suggests that local explanations must be
complemented by representation-space reasoning to avoid oversimplification.

Global fidelity measurements showed that some widely used attribution methods frequently overstated the
importance of highly variable features simply because those features produced larger activation gradients. This
led to misleading explanations that emphasized features that the model was sensitive to numerically, rather than
conceptually. In contrast, methods that aggregated attribution across model layers or across multiple inference
samples were more successful at identifying the core conceptual drivers that guided model reasoning. These
results indicate that fidelity improves when explanation models incorporate global structural reasoning rather than
relying solely on local gradient analysis.

Causal influence validation provided the most discriminative fidelity indicator. Several explanation methods
produced visually and narratively compelling explanations that did not align with the model’s actual decision
logic when features were manipulated causally. Methods that drew from counterfactual reasoning and influence-
directed feature suppression produced the highest causal alignment, demonstrating that mechanistic fidelity
requires isolating and testing model dependencies, not only observing their correlations. This stage exposed cases
where popular explanation methods produced persuasive but incorrect narratives an especially serious risk for
high-stakes decision environments.

Finally, deployment testing showed that explanation consistency degraded when computational load increased or
state persistence mechanisms were unstable. In cloud-based application environments, explanation outputs varied
when model inference contexts shifted between sessions or nodes. Systems with strong session-state retention and
representation caching maintained stable fidelity, while those without synchronization exhibited drifting or
contradictory explanations. This emphasizes that explainability fidelity is as much a systems-engineering concern
as a model-design concern explanations must remain stable across inference conditions, not just offline
evaluation.

4. Conclusion

This study demonstrates that evaluating post-hoc explainability requires measuring how closely an explanation
reflects the true internal reasoning of a model rather than how intuitively understandable the explanation appears.
The results show that methods focusing solely on feature-level attribution or simplified visual mappings can
produce compelling but misleading interpretive narratives. High-fidelity explainability must therefore incorporate
structural analysis of representation layers, causal dependency validation, and multi-level attribution coherence to
ensure that explanations reflect the actual decision pathways used by the model. Where reasoning is distributed,
purely local explanation techniques are insufficient because they capture sensitivity rather than conceptual
contribution.

The findings also emphasize that causal alignment is the strongest indicator of explanation fidelity. Only
explanations that reliably predict model behavior when input dependencies are perturbed or inverted can be
considered truthful representations of internal logic. Methods grounded in counterfactual generation and
influence-directed analysis consistently outperformed gradient-based or surrogate approximation approaches in
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capturing how models actually reasoned. This reinforces that fidelity is fundamentally tied to mechanistic
transparency rather than descriptive or narrative clarity. Explanation systems must therefore be designed to verify
reasoning structure, not just illustrate output correlations.

Finally, deployment-level evaluation revealed that fidelity is not solely a modeling challenge but also a systems-
integration concern. In cloud-based Oracle APEX environments and distributed inference settings, explanation
stability depends on memory consistency, state synchronization, and inference pipeline determinism. Explanation
fidelity must therefore be validated under realistic operational conditions rather than offline laboratory contexts.
Future work may extend this framework toward adaptive explainability engines that monitor fidelity drift in real
time, enabling models to sustain trustworthy, auditable reasoning behavior throughout their lifecycle in enterprise
and regulatory-driven environments.
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