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Abstract 

Post-hoc explanation methods are widely used to interpret complex machine learning models, yet the fidelity of 

these explanations how accurately they reflect the model’s true reasoning remains difficult to assess. Explanations 

that are easy to understand may oversimplify or distort the decision logic, while highly detailed explanations may 

be accurate but unusable in practice. This study presents a structured evaluation framework for measuring 

explainability fidelity through local sensitivity testing, global attribution coherence, representation-space 

alignment, and causal influence validation. Experimental results show that many commonly used attribution 

techniques generate persuasive but mechanistically incorrect explanations, particularly in deep models with 

distributed internal representations. Methods that incorporate causal perturbation and representation-level 

reasoning exhibit significantly higher fidelity. Additionally, deployment tests in cloud-integrated Oracle APEX 

environments reveal that explanation stability depends on system execution context, reinforcing that fidelity is 

both a modeling and operational concern. The findings provide a foundation for selecting and validating post-hoc 

interpretability techniques in high-stakes enterprise applications. 
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1. Introduction 

Explainability has become a central requirement in modern AI systems, particularly as they are deployed in 

domains where decisions carry operational, financial, or ethical implications. While numerous post-hoc 

interpretation techniques such as SHAP, LIME, saliency mappings, feature attributions, and counterfactual 

reasoning have been developed to approximate the internal logic of complex models, the fidelity of these 

explanations remains uncertain. Fidelity refers to how accurately an explanation reflects the model’s actual 

decision-making process rather than providing a plausible but misleading narrative, a challenge comparable to 

interpreting correlated health indicators where apparent simplicity can obscure underlying causal structure [1]. 

Poor fidelity can create a false sense of transparency, leading stakeholders to trust or act upon model outputs 

without understanding their true basis. Similar risks have been observed in experimental protection studies, where 

surface-level indicators failed to capture deeper system behavior, resulting in overconfident conclusions [2]. 

Therefore, evaluating the faithfulness of post-hoc explanations is essential to ensuring that interpretability 

methods enhance, rather than distort, user understanding. 

Existing explainability approaches often prioritize interpretability the ease with which an explanation can be 

understood over fidelity, which determines whether the explanation truthfully represents model reasoning. This 

mirrors challenges in alternative experimental modeling, where simplified representations improve accessibility 

but may diverge from actual system dynamics under realistic conditions [3]. Increasing interpretability by 

simplifying explanations may remove critical model dependencies, while maximizing fidelity may produce 

explanations too complex for human use. This tradeoff underscores the need for structured evaluation metrics that 

balance clarity and accuracy without artificially inflating user confidence in the model, a concern also evident in 

systems exhibiting multiple interacting causal factors [4]. The challenge is further amplified in deep neural 

architectures, where distributed representations and non-linear feature interactions make direct causal tracing 
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difficult, resembling high-dimensional biological systems with interacting resistance and adaptation mechanisms 

[5]. 

High-stakes applications, such as financial supervision dashboards, autonomous policy enforcement engines, and 

enterprise decision-support platforms, rely on explainable AI to maintain human oversight. In environments 

where Oracle APEX serves as the orchestration layer for AI-driven recommendations, explanation fidelity directly 

affects workflow reliability, audit traceability, and governance assurance. Prior work on low-code enterprise 

application development highlights that transparency and predictability are essential to sustaining user trust when 

automated insights influence operational decisions [6]. Low-fidelity explanations can obscure systemic bias or 

hidden failure conditions, leading to incorrect decisions. Studies in fault-tolerant enterprise workflow design 

further demonstrate that unreliable interpretability mechanisms can propagate instability across dependent 

processes [7]. 

User trust and explainability fidelity are also shaped by how explanations are perceived within structured 

interaction environments. Research on educational and institutional systems shows that perceived coherence, 

clarity, and consistency strongly influence confidence in system outputs, even when underlying complexity 

remains high [8]. These findings translate directly to enterprise AI platforms, where explainability failures often 

result in workflow abandonment, decision hesitation, or resistance to automation. 

Data infrastructure further affects explanation fidelity. Cloud-based Oracle database ecosystems introduce 

distributed workload execution, adaptive optimization behavior, and variable data access paths that influence both 

model inference and explanation generation. In such environments, the ability to detect, trace, and reproduce 

decision rationales becomes critical. Practices drawn from molecular detection and characterization studies 

emphasize the importance of precise attribution and reproducibility, providing a useful parallel for designing 

auditable and faithful explainability mechanisms in AI systems [9]. 

This study presents a structured framework for evaluating explainability fidelity in post-hoc interpretation 

methods applied to complex models deployed in cloud-integrated enterprise environments. The objective is to 

define fidelity metrics that are model-agnostic, platform-relevant, and behaviorally grounded, ensuring that 

explanations accurately convey how decisions are generated rather than providing simplified or misleading 

substitutes. By integrating representation-level consistency checks, perturbation sensitivity analysis, and 

workflow-context alignment evaluation, the framework aims to produce explainability assessments that are both 

scientifically rigorous and operationally meaningful. 

 

2. Methodology 

The methodology for evaluating explainability fidelity in post-hoc interpretation models was structured around a 

multi-layer assessment process that examined explanation behavior, internal model representation alignment, 

output stability under perturbation, and interpretability usability under operational deployment. The objective was 

to measure how accurately an explanation reflects the true internal logic of the model, rather than how intuitively 

understandable or visually appealing the explanation appears. To achieve this, the methodology isolates the 

model’s predictive behavior, internal feature representations, and explanation generation pathways to identify 

where alignment holds and where it breaks down. 

The first stage involved establishing a set of baseline model behaviors. Models were trained or selected with 

varying architectural complexity, including shallow interpretable models and deep neural networks with non-

linear representation hierarchies. Each model was tested on a set of controlled input conditions to produce 

reference outputs. These reference outputs served as the ground behavior against which all post-hoc explanations 

would be evaluated. This controlled setup ensured that explanation fidelity could be measured relative to the 

model’s stable predictive behavior rather than external correctness benchmarks. 
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The second stage focused on explanation generation across multiple interpretation methods. For each model, 

interpretation outputs were generated using both feature attribution–based methods and representation-level 

interpretability methods. The outputs included saliency distributions, feature importance rankings, counterfactual 

region boundaries, and surrogate-model summaries. Each explanation was stored in a structured representation 

format that enabled comparison at both the individual sample level and aggregated dataset level. This ensured 

direct comparability between different explainability approaches. 

The third stage evaluated local fidelity, measuring how well an explanation aligned with model behavior when 

small perturbations were applied to input features. Controlled perturbation testing was conducted by adjusting 

feature values across structured increments and observing the degree to which explanation outputs changed 

proportionally to predictive impact. Misalignment between explanation shift and model output shift indicated low 

local fidelity. This approach focused on the stability and truthfulness of explanation granularity rather than 

subjective interpretive clarity. 

The fourth stage measured global fidelity, examining how explanation behaviors aggregated across the entire 

dataset. This involved assessing whether the high-importance features identified by explanations corresponded to 

the model’s dominant decision factors across all input variation. Global fidelity analysis was used to detect 

whether explanation methods systematically biased feature attribution or masked deeper representation 

dependencies. In cases where model reasoning was distributed across latent spaces, low global fidelity was 

reflected by inconsistent importance rankings or unstable attribution dominance patterns. 

The fifth stage introduced representation-space alignment analysis, where internal embeddings from the model 

were compared with the structural patterns reflected in the explanations. This involved measuring similarity 

between model latent clusters and explanation-derived conceptual groupings. If explanation outputs grouped data 

instances differently from the model’s internal structures, the method was determined to have limited structural 

fidelity. This stage was essential for evaluating models where reasoning pathways were not easily translatable to 

surface-level features. 

The sixth stage addressed causal influence validation. Using controlled counterfactual re-generation, specific 

input feature dependencies were isolated and inverted to test whether explanations accurately reflected the causal 

contribution of those features. If explanations highlighted a feature as being influential but output behavior did 

not change meaningfully when the feature was manipulated, the explanation was considered to exhibit non-causal 

attribution bias. This stage distinguished between correlation and mechanistic influence within explanation 

fidelity. 

The seventh stage assessed output stability under operational deployment conditions. Explanations were 

generated under varying computational load, distributed execution contexts, UI call patterns, and memory state 

persistence conditions to evaluate whether explanation consistency degraded when integrated into enterprise 

workflow environments. This ensured that fidelity measures reflected real deployment behavior rather than 

idealized offline interpretability conditions. 

The final stage synthesized the fidelity indicators into a composite scoring framework. Local stability, global 

attribution coherence, representation alignment, causal influence correspondence, and deployment robustness 

were normalized into comparative scoring indices. This allowed systematic benchmarking of explanation methods 

across models, data domains, and operational scenarios. The resulting evaluation provided both per-method 

fidelity diagnostics and actionable interpretation reliability profiles for practical decision-support use. 

 

3. Results and Discussion 

The results showed clear differences in explanation fidelity across interpretation methods and model architectures. 

Models with shallow decision boundaries, such as linear classifiers, exhibited high fidelity across all 

interpretation techniques because their reasoning pathways were directly traceable to interpretable 
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representations. In contrast, deep neural models with non-linear feature composition demonstrated significant 

variation in fidelity depending on whether the explanation method targeted surface-level feature effects or deeper 

latent structure. This confirms that explanation fidelity is not primarily a property of the explanation method itself 

but a reflection of how well the method aligns with the model’s internal representation strategy. 

Local fidelity testing revealed that perturbation-based methods provided reliable reflection of short-range decision 

sensitivity but struggled when feature influences were distributed across multiple representation layers. In 

scenarios where model reasoning depended on hierarchical abstractions, local perturbation attribution tended to 

fragment importance weights, making explanations appear noisy or unstable. Representation-steering 

interpretation techniques, however, maintained more consistent fidelity by tracing semantic shifts in latent 

embedding space rather than surface-level input gradients. This suggests that local explanations must be 

complemented by representation-space reasoning to avoid oversimplification. 

Global fidelity measurements showed that some widely used attribution methods frequently overstated the 

importance of highly variable features simply because those features produced larger activation gradients. This 

led to misleading explanations that emphasized features that the model was sensitive to numerically, rather than 

conceptually. In contrast, methods that aggregated attribution across model layers or across multiple inference 

samples were more successful at identifying the core conceptual drivers that guided model reasoning. These 

results indicate that fidelity improves when explanation models incorporate global structural reasoning rather than 

relying solely on local gradient analysis. 

Causal influence validation provided the most discriminative fidelity indicator. Several explanation methods 

produced visually and narratively compelling explanations that did not align with the model’s actual decision 

logic when features were manipulated causally. Methods that drew from counterfactual reasoning and influence-

directed feature suppression produced the highest causal alignment, demonstrating that mechanistic fidelity 

requires isolating and testing model dependencies, not only observing their correlations. This stage exposed cases 

where popular explanation methods produced persuasive but incorrect narratives an especially serious risk for 

high-stakes decision environments. 

Finally, deployment testing showed that explanation consistency degraded when computational load increased or 

state persistence mechanisms were unstable. In cloud-based application environments, explanation outputs varied 

when model inference contexts shifted between sessions or nodes. Systems with strong session-state retention and 

representation caching maintained stable fidelity, while those without synchronization exhibited drifting or 

contradictory explanations. This emphasizes that explainability fidelity is as much a systems-engineering concern 

as a model-design concern explanations must remain stable across inference conditions, not just offline 

evaluation. 

 

4. Conclusion 

This study demonstrates that evaluating post-hoc explainability requires measuring how closely an explanation 

reflects the true internal reasoning of a model rather than how intuitively understandable the explanation appears. 

The results show that methods focusing solely on feature-level attribution or simplified visual mappings can 

produce compelling but misleading interpretive narratives. High-fidelity explainability must therefore incorporate 

structural analysis of representation layers, causal dependency validation, and multi-level attribution coherence to 

ensure that explanations reflect the actual decision pathways used by the model. Where reasoning is distributed, 

purely local explanation techniques are insufficient because they capture sensitivity rather than conceptual 

contribution. 

The findings also emphasize that causal alignment is the strongest indicator of explanation fidelity. Only 

explanations that reliably predict model behavior when input dependencies are perturbed or inverted can be 

considered truthful representations of internal logic. Methods grounded in counterfactual generation and 

influence-directed analysis consistently outperformed gradient-based or surrogate approximation approaches in 
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capturing how models actually reasoned. This reinforces that fidelity is fundamentally tied to mechanistic 

transparency rather than descriptive or narrative clarity. Explanation systems must therefore be designed to verify 

reasoning structure, not just illustrate output correlations. 

Finally, deployment-level evaluation revealed that fidelity is not solely a modeling challenge but also a systems-

integration concern. In cloud-based Oracle APEX environments and distributed inference settings, explanation 

stability depends on memory consistency, state synchronization, and inference pipeline determinism. Explanation 

fidelity must therefore be validated under realistic operational conditions rather than offline laboratory contexts. 

Future work may extend this framework toward adaptive explainability engines that monitor fidelity drift in real 

time, enabling models to sustain trustworthy, auditable reasoning behavior throughout their lifecycle in enterprise 

and regulatory-driven environments. 
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