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Abstract 

Dimensionality reduction methods are widely used to convert high-dimensional scientific and sensor 

data into compact embedding spaces for interpretation, monitoring, and diagnostic decision support. 

However, these transformations introduce structural biases that influence how similarity, continuity, and 

clustering relationships are perceived in the reduced space. This study analyzes how PCA, t-SNE, 

UMAP, and autoencoder-based embeddings redistribute variance under different normalization 

conditions and multi-sensor fusion configurations. Results show that PCA preserves global structure but 

suppresses subtle regime transitions, while manifold learning exaggerates local separations. 

Autoencoders provide transitional stability but can smooth abrupt state changes. These behaviors are 

strongly affected by preprocessing strategies, which can amplify acquisition artifacts or mask physically 

meaningful variance. The findings emphasize that embeddings are not neutral representations but 

selective transformations that must be aligned with interpretive and monitoring objectives to avoid 

analytical misinterpretation. 
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1. Introduction 

High-dimensional scientific and sensor datasets are routinely projected into lower-dimensional 

embedding spaces to enable interpretability, clustering, visualization, and event characterization. 

However, dimensionality reduction is not a neutral transformation. The choice of projection method, 

preprocessing pipeline, and feature selection can introduce representation biases that shape how 

structure is perceived in the resulting embedding space. These distortions are consequential in 

monitoring and decision-support environments, where embeddings form the basis for anomaly 

detection, event labeling, and system diagnostics [1]. Even when computational workflows operate 

within structured data infrastructures, differences in projection strategy can fundamentally alter 

analytical conclusions drawn from identical measurements [2]. 

Manifold learning techniques such as UMAP attempt to preserve local neighborhood continuity and 

nonlinear relationships, producing embeddings that emphasize fine-scale pattern interactions [3]. In 

contrast, variance-preserving techniques such as PCA emphasize dominant modes of variability, which 

may reflect aggregated process trends rather than physically meaningful signals [4]. Similarly, t-SNE 

emphasizes local similarity relationships but may distort global geometry, generating apparent cluster 

separation that is sometimes an artifact of projection rather than a reflection of intrinsic structure [5]. 

These methodological choices directly influence interpretability, classification confidence, and 

diagnostic precision. 

In scientific monitoring contexts, embedding bias is dynamic because sensor environments themselves 

evolve. Multi-form workflows that fuse heterogeneous signals further complicate representation 

stability, as embeddings trained under one regime may mischaracterize patterns emerging under another 

[6]. When operational or environmental conditions shift, embeddings may compress transitional 
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dynamics, causing early drift indicators to be misinterpreted as noise [7]. Such effects parallel 

instability observed in evolving enterprise analytics pipelines, where representation assumptions break 

under changing workloads [8]. 

The theoretical assumptions underlying dimensionality reduction also contribute to bias formation. 

Many algorithms presume smooth manifolds, stable distance metrics, or linear separability [9]. Real-

world sensor environments frequently violate these assumptions through discontinuities, regime 

transitions, and localized anomalies. When embeddings prioritize global consistency, rare but 

meaningful patterns are absorbed into dominant variance structures [10]. Conversely, locality-focused 

embeddings may over-amplify transient fluctuations, creating false micro-clusters that obscure broader 

continuity [11]. 

Bias further emerges at the data integration layer. In multi-instrument or cross-site measurement 

systems, differences in calibration, sampling resolution, and synchronization introduce structural noise 

that can be amplified during projection [12]. Manifold regularization studies demonstrate that 

embeddings encode not only signal structure but also acquisition conditions [13]. Without explicit 

correction, embedding spaces may partition observations by instrumentation or sampling window rather 

than by physical or scientific relationships [14]. This leads to misinterpretation in clustering, 

classification, and anomaly scoring tasks. 

Computational implementation choices also influence bias propagation. The growing reliance on 

streaming feature pipelines and high-frequency embedding updates means that numerical precision, 

batching strategies, and memory optimization heuristics can subtly alter embedding geometry [15]. 

Distributed and cloud-based execution architectures may further affect neighborhood preservation 

through data reordering or asynchronous processing [16]. Similar effects have been documented in 

large-scale ETL and transformation pipelines, where execution ordering alters semantic outcomes [17]. 

Enterprise-grade data workflows reinforce that representation stability depends on metadata discipline 

and pipeline governance. Studies on low-code and workflow-driven data systems show that implicit 

transformations can silently reshape feature distributions before embedding [18]. Automated validation 

and data-quality enforcement mechanisms have been shown to reduce representation drift by 

constraining transformation semantics [19]. Without such controls, embedding bias accumulates 

gradually across pipeline stages. 

In regulated and compliance-sensitive environments, representation bias carries additional risk. 

Financial reconciliation systems, audit pipelines, and compliance monitoring frameworks depend on 

stable representations to ensure traceability and interpretability [20]. Blockchain-based compliance 

architectures further emphasize the need for deterministic and explainable representation pathways [21]. 

Bias introduced during dimensionality reduction can therefore propagate into governance failures rather 

than remaining a purely analytical concern. 

Recent work in adaptive learning and optimization highlights that representation geometry is 

inseparable from downstream decision reliability. Reinforcement learning systems and Bayesian 

optimization frameworks demonstrate sensitivity to embedding stability when operating under non-

stationary inputs [22]. Biomedical and physiological monitoring research similarly confirms that 

representational distortion can mask clinically relevant transitions [23]. These findings reinforce that 

dimensionality reduction bias must be treated as a structural property of the representation pipeline 

rather than an incidental computational artifact [24-26]. 

 

2. Methodology 
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The methodology used to analyze dimensionality reduction biases in embedding feature spaces was 

based on controlled transformations of multi-sensor scientific datasets under varying preprocessing, 

normalization, and projection configurations. The goal was to determine how different embedding 

models emphasize or suppress variance modes and how these effects propagate into interpretability and 

downstream analytical decisions. The approach treated the embedding space not as a static 

representation but as a dynamic, parameter-sensitive transformation surface influenced by both model 

architecture and data characteristics. 

The first step involved constructing a benchmark dataset composed of multiple heterogeneous sensor 

streams with varying sampling frequencies, amplitude ranges, and environmental noise characteristics. 

Rather than homogenizing the dataset into a uniform feature representation at the outset, the dataset was 

preserved in its heterogeneous form to observe how preprocessing decisions shifted the distribution of 

variance. The data was then segmented into multiple operational regimes to reflect real-world condition 

changes rather than assuming a single stationary process domain. 

The second step introduced a set of standardized preprocessing pipelines. These pipelines included 

normalization approaches such as min–max scaling, z-score standardization, percentile-based scaling, 

and power transformation. Each of these normalization paths produces a different conditioning of 

variance across dimensions, which in turn affects how dimensionality reduction algorithms assign 

importance to various components. The effect of each normalization pipeline was analyzed 

independently to determine how variance redistribution influenced the structure of the final embedding. 

The third step applied multiple dimensionality reduction models to each normalized dataset. PCA, t-

SNE, UMAP, and autoencoder-based latent space encoders were selected for projection. PCA provided 

a linear baseline emphasizing global variance, while t-SNE and UMAP introduced manifold learning 

behavior emphasizing local neighborhood structure. The autoencoder provided a learned nonlinear 

compression boundary that adapts to data shape. Each model was configured with controlled 

hyperparameters to avoid overfitting projection artifacts to parameter tuning rather than underlying data 

structure. 

The fourth step evaluated embedding outputs using geometric and statistical metrics rather than only 

visual observation. Local neighborhood preservation scores, global continuity scores, inter-cluster 

separation ratios, and cluster compactness values were computed for each projection. These measures 

exposed how each model redistributed distance and similarity relationships. Particular attention was 

given to how small but scientifically meaningful variance patterns were either maintained or lost across 

embeddings. 

The fifth step examined embedding stability under regime transitions. Sensor segments representing 

gradual system drift, abrupt operational shifts, and noise-injected disturbances were passed through the 

embedding pipeline without retraining. This allowed assessment of whether the embedding space 

preserved continuity across transitions or exaggerated distinctions. The interpretation stability of 

clusters was also tested by re-running projection models on identical datasets with randomized row 

ordering and observing whether cluster topologies remained consistent. 

The sixth step analyzed the effect of multi-sensor fusion. Individual sensors were embedded 

independently, and then embedded jointly. When embeddings were computed jointly, alignment errors, 

calibration offsets, and sampling rate differences were monitored to determine whether projection 

geometry reflected physical structure or acquisition artifacts. This evaluation clarified whether 

embedding clustering corresponded to operational regimes or simply to device conditions. 

The final phase involved synthesizing these evaluations into a bias characterization profile for each 

embedding configuration. This profile captured how each projection model redistributed variance, 

altered neighborhood continuity, and shifted interpretability boundaries. The characterization enabled 

identification of which embedding methods were best suited for representing subtle physical state 
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changes versus those more appropriate for broad trend visualization. The resulting methodology 

establishes a repeatable evaluation framework that can be applied to any multi-sensor scientific dataset 

where dimensionality reduction is used for interpretation or decision-support workflows. 

 

3. Results and Discussion 

The application of the standardized preprocessing and projection methodology revealed clear patterns in 

how different dimensionality reduction models introduced and amplified bias in scientific sensor 

embeddings. PCA consistently preserved the dominant global variance patterns but suppressed subtle 

regime-specific fluctuations that were essential for early anomaly detection. This led to embeddings that 

visually appeared smooth and continuous, but which failed to distinguish small but meaningful 

transitions in operational behavior. In contrast, t-SNE and UMAP emphasized local structure, which 

increased the visibility of transient states and boundary conditions, but at the cost of exaggerating 

separations between regimes that were physically continuous. 

When evaluating embedding stability across regime transitions, autoencoder-based embeddings 

demonstrated the most consistent continuity of representation. Because autoencoders derive 

compression boundaries based on reconstruction loss, they maintained relationships between segments 

that evolved gradually over time. However, when abrupt operational changes occurred, autoencoder 

embeddings tended to smooth these transitions, reducing the clarity of state boundaries for diagnostic 

tasks. This smoothing behavior is beneficial for visualization but may mask early fault signatures in 

condition-monitoring environments. 

The effect of normalization strategy proved equally significant. Min–max scaling produced embeddings 

that were highly sensitive to outliers, resulting in distorted cluster boundaries in both t-SNE and UMAP 

projections. Z-score normalization generated more stable embeddings across all projection models, 

particularly for datasets with varying amplitude distributions. Percentile-based scaling provided the best 

performance when sensor channels exhibited heavy-tailed distributions, as it reduced the influence of 

extreme values without suppressing underlying variance patterns. 

Multi-sensor fusion analysis further clarified that embedding artifacts often originated from data 

acquisition differences rather than physical relationships. When embeddings were computed jointly 

across multiple sensors, clusters frequently corresponded to sensor calibration and sampling rate 

discrepancies rather than operational regimes. Embedding stability improved significantly when fusion 

was performed after temporal alignment and variance equalization, confirming that preprocessing 

decisions are structural determinants of embedding geometry. 

Quantitative evaluation metrics provided a systematic means of comparing these behaviors. As shown 

in Table 1, UMAP achieved the highest neighborhood preservation, PCA maintained the strongest 

global continuity, and autoencoders provided the best balanced performance across both criteria. t-SNE 

exhibited the most variability and sensitivity to parameter configuration, making it suitable only in 

workflows where interpretability precision is prioritized over geometric reliability. 

Table 1. Comparative Embedding Performance Metrics Across Models 

Embedding 

Method 

Local Neighborhood 

Preservation (↑) 

Global Structure 

Continuity (↑) 

Stability Across 

Regime Shift 

(↑) 

Sensitivity to 

Normalization (↓) 

PCA Moderate High Moderate Low 

t-SNE High Low Low High 
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UMAP High Moderate Moderate Moderate 

Autoencoder Moderate Moderate High Moderate 

 

4. Conclusion 

The evaluation demonstrates that dimensionality reduction methods introduce distinct and measurable 

biases into embedding feature spaces, and these biases directly influence interpretability, anomaly 

detection accuracy, and system diagnostics. PCA favors global variance structure but suppresses local 

behavior transitions, while manifold learning models such as t-SNE and UMAP emphasize fine local 

relationships at the cost of distorting global continuity. Autoencoder-based embeddings provide a 

middle ground with improved regime transition stability but may smooth abrupt changes, potentially 

masking early signs of system degradation. These differences highlight that embedding selection must 

be aligned with the physical interpretation goals of the monitoring system rather than chosen purely for 

visualization quality. 

The results also confirm that preprocessing and multi-sensor fusion pipelines strongly shape embedding 

geometry, sometimes more than the dimensionality reduction algorithm itself. Differences in 

normalization strategy, temporal alignment, and variance scaling were shown to shift clustering patterns 

and neighborhood relationships independently of model selection. Therefore, mitigating embedding bias 

requires treating the entire feature transformation pipeline as a coupled system, where variance 

redistribution, sampling resolution, and dynamic behavior are controlled jointly rather than in isolation. 

Ultimately, dimensionality reduction should not be assumed to produce objective summaries of high-

dimensional scientific data. Instead, embedding spaces encode selective emphasis patterns that must be 

understood, quantified, and evaluated in relation to the underlying physical processes being studied. By 

applying structured preprocessing, embedding selection tailored to interpretive goals, and stability 

assessment across regime transitions, analysts can ensure that embeddings remain scientifically 

meaningful, operationally reliable, and resilient to evolving measurement conditions. 
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