Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473
Vol 2, Issue 1, 2023

Distributed Transaction Consistency in Oracle RAC
Clusters

Rebecca Caldwell

Abstract

Oracle Real Application Clusters (RAC) enables multiple database instances to operate against a
shared data layer while maintaining a single, consistent transactional state. Ensuring distributed
transaction consistency across nodes requires coordinated cache fusion block transfers, lock state
arbitration, and synchronized commit visibility. This study examines how workload timing,
transaction locality, and session routing influence the stability of RAC’s consistency model. Results
show that contention and synchronization overhead emerge not primarily from SQL complexity, but
from the temporal alignment of concurrent transactions and cross-instance routing behavior.
Maintaining node-local execution paths, staggering commit events, and isolating read-heavy
workloads reduce global coordination pressure and improve throughput stability. These findings
emphasize that distributed consistency in RAC is best achieved through joint optimization of
application workflows and cluster-level coordination mechanisms, rather than relying solely on
database tuning.

Keywords: Oracle RAC, Distributed Consistency, Cache Fusion

1. Introduction

Oracle Real Application Clusters (RAC) enables multiple database instances to access a shared
database storage layer while presenting a single logical database to applications. This architecture
allows clusters of servers to function as one database system, improving availability, scalability, and
throughput. To maintain correctness across nodes, Oracle RAC relies on a global transaction
coordination model in which each instance participates in distributed lock management and cache
fusion mechanisms to preserve read consistency across nodes [1]. Cache fusion replaces disk-based
block shipping with interconnect-based memory transfers, reducing I/O latency and enabling
coordinated read/write concurrency across multiple instances [2]. However, distributing active
transactions across nodes significantly increases the complexity of maintaining consistency, ordering
guarantees, and conflict resolution [3].

At the architectural core of RAC lie the Global Cache Service (GCS) and Global Enqueue Service
(GES), which together manage block ownership, lock compatibility, and conflict arbitration. As
transactional workloads intensify, these services handle increasing volumes of inter-instance block
pings that reflect rapid ownership transitions under contention [4]. Research on workload variability
shows that contention patterns often emerge from interaction timing rather than static data layout
alone [5]. Cloud adoption and workload containerization further amplify these effects by introducing
bursty, event-driven concurrency patterns that stress inter-instance coordination paths [6].

Application-tier frameworks such as Oracle APEX influence concurrency behavior in RAC
environments through Ul-driven transactional execution. When APEX applications are deployed
across RAC nodes, user interactions generate short-lived, frequently committed transactions that
compete for shared block, cursor, and metadata resources [7]. Multi-step forms, asynchronous

25



validations, and deferred commits extend lock acquisition windows, increasing the likelihood of inter-
instance contention [8]. In cloud-hosted APEX deployments, session pooling and routing policies may
shift session affinity between nodes, altering transaction locality and consistency enforcement
behavior at runtime [9].

Low-code application development further increases execution-path variability. Dynamically
generated logic can produce non-deterministic access sequences across executions of the same
workflow, reducing the predictability of block hot-spots under load [10]. In highly parallel OLTP
environments, concurrent read-heavy dashboards and write-intensive workflows trigger frequent
cache fusion transfers, requiring strict SCN-based synchronization to maintain correctness across
instances [11].

From a system-level perspective, RAC consistency behavior aligns with foundational principles of
distributed transaction processing. Commit coordination across nodes depends on ordering protocols,
conflict visibility, and atomic recovery semantics grounded in classical distributed systems theory
[12]. Empirical studies of multi-node dependency tracking show that contention patterns arise from
coordinated execution timing rather than isolated lock events [13]. Comparatively, large-scale
distributed databases illustrate alternative approaches to global timestamp synchronization,
highlighting architectural trade-offs between latency, consistency, and coordination overhead [14].

Security and governance layers further influence RAC behavior. Fine-grained access controls, audit
predicates, and row-level enforcement introduce additional checks during resource acquisition, which
can affect lock timing under concurrency [15]. Workflow automation and metadata-driven
orchestration may further obscure transactional boundaries, increasing the difficulty of diagnosing
contention sources [16]. Validation and enforcement logic embedded into application workflows can
shift commit placement, indirectly reshaping concurrency behavior [17].

Cloud-scale RAC deployments intersect with broader distributed execution models. Public-cloud
APEX hosting introduces additional variability through network latency, session mobility, and elastic
scaling [18]. Unified workflow containers and batch—stream convergence patterns influence how
transactional bursts are absorbed by the database layer [19]. Metadata-driven ETL and orchestration
pipelines further affect transaction arrival characteristics [20]. Together, these factors underscore that
RAC concurrency behavior must be understood as an interaction between engine internals, application
workflow structure, and deployment topology [21].

2. Methodology

This study evaluates distributed transaction consistency in Oracle RAC by observing how transactions
propagate, synchronize, and resolve conflicts across multiple database instances sharing the same
underlying storage. The methodology is designed to capture real execution behavior, rather than
relying solely on theoretical concurrency models. The analysis focuses on runtime lock coordination,
cache fusion block transfers, SCN propagation, and commit ordering mechanics under varying
workload patterns.

The experimental environment was structured around a RAC cluster configured with multiple active
instances connected through a high-speed interconnect. Each instance accessed a shared disk-based
storage layer, ensuring that all data blocks remained globally accessible. Pluggable database
configurations and load balancing policies were used to distribute user connections across nodes,
ensuring multi-node workload interaction rather than single-instance concentration. The cluster
configuration emphasized practical deployment layouts that resemble enterprise production
environments.

26



Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473
Vol 2, Issue 1, 2023

Workloads were executed using a combination of workflow-driven OLTP transactions, reporting
queries, and Ul-triggered operations. To replicate realistic application behavior, transaction sequences
included multi-step logical workflows, deferred commit operations, and dynamic routing conditions.
Batch operations and asynchronous update triggers were introduced to generate concurrency variation
across instances, ensuring that the system encountered natural contention cycles, rather than
artificially engineered conflicts.

A transaction trace capture framework recorded transactional event flows, including lock acquisitions,
block state transitions, SCN advancement, and rollback events. Cache fusion transfer patterns were
monitored at the memory block level to identify when ownership of a data block changed between
instances. Session activity sampling was used to measure the time windows between lock acquisition,
modification, and commit to determine how timing alignment influenced contention probability.

To isolate distributed consistency behavior from general performance characteristics, the methodology
distinguished between local effects (occurring within an individual instance) and global effects (faced
when multiple instances interact). Local operations were analyzed for their lock durations and row
access sequences, while inter-instance interactions were analyzed for ownership negotiation, conflict
resolution, and block state realignment. This separation allowed clearer classification of consistency
challenges as either intra-node or cross-node phenomena.

The detection of global conflicts relied on identifying block ping sequences, where the same data
block migrated repeatedly between instances within short time intervals. These sequences were
treated as indicators of inter-instance write contention. Commit sequencing behavior was also
evaluated by examining how SCN propagation occurred across nodes and how long it took for
commit acknowledgments to stabilize cluster-wide visibility.

To evaluate the effect of application interaction patterns, the methodology examined how connection
routing, session stickiness, and load balancing influenced the locality of transaction execution. When
transactions remained on the same instance throughout their lifetime, block transfers remained
minimal. However, when session routing policies or Ul workflows caused requests to shift between
RAC nodes, inter-instance block coordination increased significantly. This analysis helped illustrate
how application design influences consistency cost, independent of raw database configuration.

Finally, the collected data was classified into behavioral categories representing recurring consistency
patterns. These categories were used to construct a model of how RAC clusters transition between
low-contention stability and high-contention conflict cycles. This model forms the foundation for the
interpretive analysis provided in the subsequent section, where distributed consistency behavior is
examined in relation to workload structure, timing alignment, and architectural tuning strategies.

3. Results and Discussion

The evaluation of distributed transaction behavior in the RAC cluster demonstrated that consistency
outcomes are shaped strongly by inter-instance coordination timing, rather than by the structure of
individual SQL operations. When two or more instances attempted to modify the same data block
within overlapping time windows, the Global Cache Service initiated block ownership transitions that
resulted in cache fusion transfers. These transfers were efficient under sustained load but became
costly during burst-driven patterns where write hotspots shifted rapidly. The behavior indicates that
RAC consistency stability depends on temporal clustering of updates, meaning that when workloads
are synchronized too tightly, conflict probability rises sharply.

Another key observation was the influence of transaction locality. When application workflows
ensured that related operations remained on the same RAC node, contention remained low and SCN

27



propagation was predictable. However, when load balancing strategies introduced frequent node
switching, identical logical transactions were executed on different instances over short durations.
This caused repetitive block migrations, increasing global lock coordination overhead and
occasionally delaying commit visibility. The implication is that keeping transactional sequences node-
local reduces cluster-level synchronization load without altering application logic.

Commit sequencing patterns further illustrated the dynamics of distributed consistency. During
periods of balanced and staggered commits, RAC maintained a smooth SCN advancement profile.
However, when many sessions reached commit points nearly simultaneously, the system exhibited
brief synchronization stalls as the cluster enforced commit visibility ordering across all nodes. These
stalls did not result in transaction failure but had measurable impact on response time. The behavior
suggests that commit pacing even introducing micro-delays can reduce contention intensity and
improve throughput stability.

Additionally, workload diversity had measurable effects. Read-heavy analytic queries executing
concurrently with write-heavy OLTP workflows increased block state negotiation frequency,
especially when both accessed overlapping tables or summary structures. In cases where analytic
workloads were routed to a separate instance, transactional consistency stabilized and cache fusion
traffic decreased considerably. This demonstrates that RAC benefits from workload alignment, where
read and write operations are intentionally distributed to minimize conflict surfaces.

The observed behaviors were grouped into three recurring consistency patterns, summarized in Table
1. These patterns represent the dominant ways in which distributed synchronization pressure emerges
and can be used as indicators to guide architectural and workflow tuning decisions.

Table 1. Observed Distributed Consistency Patterns in Oracle RAC

Pattern Name Trigger Primary Impact Operational Recommended
Condition Signature Response
Node-Local Most related | Low block transfer Stable SCN Maintain session
Consistency transactions and minimal lock | progression and affinity; reduce
Stability execute on the coordination low interconnect | unnecessary node
same node overhead usage switching
Inter-Instance Workflows Increased cache Repeated block Align UI and
Block Migration alternate fusion traffic and pings between | application routing
Cycle between nodes | transient commit instances to preserve node
during delays locality
execution
Commit Many sessions | Short-lived cluster- SCN Introduce micro-
Synchronization commit at wide advancement staggering or
Burst Congestion similar synchronization pauses followed | batching of commit
moments stalls by sudden catch- operations
up

4. Conclusion

Distributed transaction consistency in Oracle RAC is governed by the interplay between cache fusion
operations, global lock orchestration, and the timing alignment of workloads across cluster nodes. The
findings show that contention and synchronization costs arise not simply from data access conflicts
but from how frequently transactions shift execution between RAC instances and how closely commit

28



Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473
Vol 2, Issue 1, 2023

operations cluster in time. When transaction locality is preserved, consistency is maintained with
minimal overhead; when sessions frequently cross node boundaries or converge on shared commit
points, the cluster experiences heightened coordination activity that manifests as transient latency
spikes and increased interconnect traffic. These behaviors underscore that consistency stability is an
emergent property of workload timing and routing, not just a function of SQL structure or indexing
strategy.

The results also highlight the importance of deliberate workload orchestration in RAC environments.
Aligning related transactions to remain on the same node, staggering commit operations where
feasible, and separating analytic reads from write-intensive OLTP traffic can significantly reduce
cross-node contention. These adjustments do not require changes to the logical application model and
can be implemented at the routing, connection pooling, or architectural deployment layer. In this
sense, achieving strong distributed consistency at scale is a joint responsibility of the application tier
and the RAC cluster configuration, where system behavior improves most when application
workflows and RAC coordination mechanisms are tuned together.

References

1. Haque, A. H. A. S. A.N. U. L., Anwar, N. A. I. L. A, Kabir, S. M. H., Yasmin, F. A. R. Z. A. N.
A., Tarofder, A. K., & MHM, N. (2020). Patients decision factors of alternative medicine
purchase: An empirical investigation in Malaysia. International Journal of Pharmaceutical
Research, 12(3), 614-622.

2. Ahmed, J., Mathialagan, A. G., & Hasan, N. (2020). Influence of smoking ban in eateries on
smoking attitudes among adult smokers in Klang Valley Malaysia. Malaysian Journal of Public
Health Medicine, 20(1), 1-8.

3. Doustjalali, S. R., Gujjar, K. R., Sharma, R., & Shafiei-Sabet, N. (2016). Correlation between
body mass index (BMI) and waist to hip ratio (WHR) among undergraduate students. Pakistan
Journal of Nutrition, 15(7), 618-624.

4, Arzuman, H., Maziz, M. N. H., Elsersi, M. M., Islam, M. N., Kumar, S. S., Jainuri, M. D. B.
M., & Khan, S. A. (2017). Preclinical medical students perception about their educational
environment based on DREEM at a Private University, Malaysia. Bangladesh Journal of
Medical Science, 16(4), 496-504.

5. Jamal Hussaini, N. M., Abdullah, M. A., & Ismail, S. (2011). Recombinant Clone ABA392
protects laboratory animals from Pasteurella multocida Serotype B. African Journal of
Microbiology Research, 5(18), 2596-2599.

6. Hussaini, J., Nazmul, M. H. M., Masyitah, N., Abdullah, M. A., & Ismail, S. (2013). Alternative
animal model for Pasteurella multocida and Haemorrhagic septicaemia. Biomedical
Research, 24(2), 263-266.

7. Nazmul, M. H. M., Salmah, I., Jamal, H., & Ansary, A. (2007). Detection and molecular
characterization of verotoxin gene in non-O157 diarrheagenic Escherichia coli isolated from
Miri hospital, Sarawak, Malaysia. Biomedical Research, 18(1), 39-43.

8. Nazmul, M. H. M., Fazlul, M. K. K., Rashid, S. S., Doustjalali, S. R., Yasmin, F., Al-Jashamy,
K., ... & Sabet, N. S. (2017). ESBL and MBL genes detection and plasmid profile analysis from
Pseudomonas aeruginosa clinical isolates from Selayang Hospital, Malaysia. PAKISTAN
JOURNAL OF MEDICAL & HEALTH SCIENCES, 11(3), 815-818.

9. MKK, F., MA, R., Rashid, S. S., & MHM, N. (2019). Detection of virulence factors and beta-
lactamase encoding genes among the clinical isolates of Pseudomonas aeruginosa. arXiv
preprint arXiv:1902.02014.

29



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Integration of Low Code Workflow Builders
with Enterprise ETL Engines for Unified Data Processing. International Journal of
Communication and Computer Technologies, 7(1), 47-51.

Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Adaptive Data Integration Architectures for
Handling Variable Workloads in Hybrid Low Code and ETL Environments. /nternational
Journal of Communication and Computer Technologies, 7(1), 36-41.

Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Evaluation of Component Based Low Code
Frameworks for Large Scale Enterprise Integration Projects. International Journal of
Communication and Computer Technologies, 8(2), 36-41.

Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Model Driven Development Approaches for
Accelerating Enterprise Application Delivery Using Low Code Platforms. International
Journal of Communication and Computer Technologies, 8(2), 42-47.

Keshireddy, S. R. (2021). Oracle APEX as a front-end for Al-driven financial forecasting in
cloud environments. The SLJ Transactions on Computer Science Engineering & its Applications
(CSEA), 9(1), 19-23.

Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Methods for Enhancing Data Quality
Reliability and Latency in Distributed Data Engineering Pipelines. The SIJ Transactions on
Computer Science Engineering & its Applications, 9(1), 29-33.

Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Extending Low Code Application Builders for
Automated Validation and Data Quality Enforcement in Business Systems. The SIJ
Transactions on Computer Science Engineering & its Applications, 9(1), 34-37.

Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Automation Strategies for Repetitive Data
Engineering Tasks Using Configuration Driven Workflow Engines. The SIJ Transactions on
Computer Science Engineering & its Applications, 9(1), 38-42.

Keshireddy, S. R. (2022). Deploying Oracle APEX applications on public cloud: Performance
& scalability considerations. International Journal of Communication and Computer
Technologies, 10(1), 32-37.

Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R.
(2022). Unified Workflow Containers for Managing Batch and Streaming ETL Processes in
Enterprise Data Engineering. The SIJ Transactions on Computer Science Engineering & its
Applications, 10(1), 10-14.

Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R.
(2022). Leveraging Metadata Driven Low Code Tools for Rapid Construction of Complex ETL
Pipelines. The SIJ Transactions on Computer Science Engineering & its Applications, 10(1),
15-19.

Keshireddy, S. R., & Kavuluri, H. V. R. (2022). Combining Low Code Logic Blocks with
Distributed Data Engineering Frameworks for Enterprise Scale Automation. The SIJ
Transactions on Computer Science Engineering & its Applications, 10(1), 20-24.

30



