
Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473

 Vol 2, Issue 1, 2023

25

Distributed Transaction Consistency in Oracle RAC

Clusters

Rebecca Caldwell

Abstract

Oracle Real Application Clusters (RAC) enables multiple database instances to operate against a

shared data layer while maintaining a single, consistent transactional state. Ensuring distributed

transaction consistency across nodes requires coordinated cache fusion block transfers, lock state

arbitration, and synchronized commit visibility. This study examines how workload timing,

transaction locality, and session routing influence the stability of RAC’s consistency model. Results

show that contention and synchronization overhead emerge not primarily from SQL complexity, but

from the temporal alignment of concurrent transactions and cross-instance routing behavior.

Maintaining node-local execution paths, staggering commit events, and isolating read-heavy

workloads reduce global coordination pressure and improve throughput stability. These findings

emphasize that distributed consistency in RAC is best achieved through joint optimization of

application workflows and cluster-level coordination mechanisms, rather than relying solely on

database tuning.

Keywords: Oracle RAC, Distributed Consistency, Cache Fusion

1. Introduction

Oracle Real Application Clusters (RAC) enables multiple database instances to access a shared

database storage layer while presenting a single logical database to applications. This architecture

allows clusters of servers to function as one database system, improving availability, scalability, and

throughput. To maintain correctness across nodes, Oracle RAC relies on a global transaction

coordination model in which each instance participates in distributed lock management and cache

fusion mechanisms to preserve read consistency across nodes [1]. Cache fusion replaces disk-based

block shipping with interconnect-based memory transfers, reducing I/O latency and enabling

coordinated read/write concurrency across multiple instances [2]. However, distributing active

transactions across nodes significantly increases the complexity of maintaining consistency, ordering

guarantees, and conflict resolution [3].

At the architectural core of RAC lie the Global Cache Service (GCS) and Global Enqueue Service

(GES), which together manage block ownership, lock compatibility, and conflict arbitration. As

transactional workloads intensify, these services handle increasing volumes of inter-instance block

pings that reflect rapid ownership transitions under contention [4]. Research on workload variability

shows that contention patterns often emerge from interaction timing rather than static data layout

alone [5]. Cloud adoption and workload containerization further amplify these effects by introducing

bursty, event-driven concurrency patterns that stress inter-instance coordination paths [6].

Application-tier frameworks such as Oracle APEX influence concurrency behavior in RAC

environments through UI-driven transactional execution. When APEX applications are deployed

across RAC nodes, user interactions generate short-lived, frequently committed transactions that

compete for shared block, cursor, and metadata resources [7]. Multi-step forms, asynchronous

26

validations, and deferred commits extend lock acquisition windows, increasing the likelihood of inter-

instance contention [8]. In cloud-hosted APEX deployments, session pooling and routing policies may

shift session affinity between nodes, altering transaction locality and consistency enforcement

behavior at runtime [9].

Low-code application development further increases execution-path variability. Dynamically

generated logic can produce non-deterministic access sequences across executions of the same

workflow, reducing the predictability of block hot-spots under load [10]. In highly parallel OLTP

environments, concurrent read-heavy dashboards and write-intensive workflows trigger frequent

cache fusion transfers, requiring strict SCN-based synchronization to maintain correctness across

instances [11].

From a system-level perspective, RAC consistency behavior aligns with foundational principles of

distributed transaction processing. Commit coordination across nodes depends on ordering protocols,

conflict visibility, and atomic recovery semantics grounded in classical distributed systems theory

[12]. Empirical studies of multi-node dependency tracking show that contention patterns arise from

coordinated execution timing rather than isolated lock events [13]. Comparatively, large-scale

distributed databases illustrate alternative approaches to global timestamp synchronization,

highlighting architectural trade-offs between latency, consistency, and coordination overhead [14].

Security and governance layers further influence RAC behavior. Fine-grained access controls, audit

predicates, and row-level enforcement introduce additional checks during resource acquisition, which

can affect lock timing under concurrency [15]. Workflow automation and metadata-driven

orchestration may further obscure transactional boundaries, increasing the difficulty of diagnosing

contention sources [16]. Validation and enforcement logic embedded into application workflows can

shift commit placement, indirectly reshaping concurrency behavior [17].

Cloud-scale RAC deployments intersect with broader distributed execution models. Public-cloud

APEX hosting introduces additional variability through network latency, session mobility, and elastic

scaling [18]. Unified workflow containers and batch–stream convergence patterns influence how

transactional bursts are absorbed by the database layer [19]. Metadata-driven ETL and orchestration

pipelines further affect transaction arrival characteristics [20]. Together, these factors underscore that

RAC concurrency behavior must be understood as an interaction between engine internals, application

workflow structure, and deployment topology [21].

2. Methodology

This study evaluates distributed transaction consistency in Oracle RAC by observing how transactions

propagate, synchronize, and resolve conflicts across multiple database instances sharing the same

underlying storage. The methodology is designed to capture real execution behavior, rather than

relying solely on theoretical concurrency models. The analysis focuses on runtime lock coordination,

cache fusion block transfers, SCN propagation, and commit ordering mechanics under varying

workload patterns.

The experimental environment was structured around a RAC cluster configured with multiple active

instances connected through a high-speed interconnect. Each instance accessed a shared disk-based

storage layer, ensuring that all data blocks remained globally accessible. Pluggable database

configurations and load balancing policies were used to distribute user connections across nodes,

ensuring multi-node workload interaction rather than single-instance concentration. The cluster

configuration emphasized practical deployment layouts that resemble enterprise production

environments.

Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473

 Vol 2, Issue 1, 2023

27

Workloads were executed using a combination of workflow-driven OLTP transactions, reporting

queries, and UI-triggered operations. To replicate realistic application behavior, transaction sequences

included multi-step logical workflows, deferred commit operations, and dynamic routing conditions.

Batch operations and asynchronous update triggers were introduced to generate concurrency variation

across instances, ensuring that the system encountered natural contention cycles, rather than

artificially engineered conflicts.

A transaction trace capture framework recorded transactional event flows, including lock acquisitions,

block state transitions, SCN advancement, and rollback events. Cache fusion transfer patterns were

monitored at the memory block level to identify when ownership of a data block changed between

instances. Session activity sampling was used to measure the time windows between lock acquisition,

modification, and commit to determine how timing alignment influenced contention probability.

To isolate distributed consistency behavior from general performance characteristics, the methodology

distinguished between local effects (occurring within an individual instance) and global effects (faced

when multiple instances interact). Local operations were analyzed for their lock durations and row

access sequences, while inter-instance interactions were analyzed for ownership negotiation, conflict

resolution, and block state realignment. This separation allowed clearer classification of consistency

challenges as either intra-node or cross-node phenomena.

The detection of global conflicts relied on identifying block ping sequences, where the same data

block migrated repeatedly between instances within short time intervals. These sequences were

treated as indicators of inter-instance write contention. Commit sequencing behavior was also

evaluated by examining how SCN propagation occurred across nodes and how long it took for

commit acknowledgments to stabilize cluster-wide visibility.

To evaluate the effect of application interaction patterns, the methodology examined how connection

routing, session stickiness, and load balancing influenced the locality of transaction execution. When

transactions remained on the same instance throughout their lifetime, block transfers remained

minimal. However, when session routing policies or UI workflows caused requests to shift between

RAC nodes, inter-instance block coordination increased significantly. This analysis helped illustrate

how application design influences consistency cost, independent of raw database configuration.

Finally, the collected data was classified into behavioral categories representing recurring consistency

patterns. These categories were used to construct a model of how RAC clusters transition between

low-contention stability and high-contention conflict cycles. This model forms the foundation for the

interpretive analysis provided in the subsequent section, where distributed consistency behavior is

examined in relation to workload structure, timing alignment, and architectural tuning strategies.

3. Results and Discussion

The evaluation of distributed transaction behavior in the RAC cluster demonstrated that consistency

outcomes are shaped strongly by inter-instance coordination timing, rather than by the structure of

individual SQL operations. When two or more instances attempted to modify the same data block

within overlapping time windows, the Global Cache Service initiated block ownership transitions that

resulted in cache fusion transfers. These transfers were efficient under sustained load but became

costly during burst-driven patterns where write hotspots shifted rapidly. The behavior indicates that

RAC consistency stability depends on temporal clustering of updates, meaning that when workloads

are synchronized too tightly, conflict probability rises sharply.

Another key observation was the influence of transaction locality. When application workflows

ensured that related operations remained on the same RAC node, contention remained low and SCN

28

propagation was predictable. However, when load balancing strategies introduced frequent node

switching, identical logical transactions were executed on different instances over short durations.

This caused repetitive block migrations, increasing global lock coordination overhead and

occasionally delaying commit visibility. The implication is that keeping transactional sequences node-

local reduces cluster-level synchronization load without altering application logic.

Commit sequencing patterns further illustrated the dynamics of distributed consistency. During

periods of balanced and staggered commits, RAC maintained a smooth SCN advancement profile.

However, when many sessions reached commit points nearly simultaneously, the system exhibited

brief synchronization stalls as the cluster enforced commit visibility ordering across all nodes. These

stalls did not result in transaction failure but had measurable impact on response time. The behavior

suggests that commit pacing even introducing micro-delays can reduce contention intensity and

improve throughput stability.

Additionally, workload diversity had measurable effects. Read-heavy analytic queries executing

concurrently with write-heavy OLTP workflows increased block state negotiation frequency,

especially when both accessed overlapping tables or summary structures. In cases where analytic

workloads were routed to a separate instance, transactional consistency stabilized and cache fusion

traffic decreased considerably. This demonstrates that RAC benefits from workload alignment, where

read and write operations are intentionally distributed to minimize conflict surfaces.

The observed behaviors were grouped into three recurring consistency patterns, summarized in Table

1. These patterns represent the dominant ways in which distributed synchronization pressure emerges

and can be used as indicators to guide architectural and workflow tuning decisions.

Table 1. Observed Distributed Consistency Patterns in Oracle RAC

Pattern Name Trigger

Condition

Primary Impact Operational

Signature

Recommended

Response

Node-Local

Consistency

Stability

Most related

transactions

execute on the

same node

Low block transfer

and minimal lock

coordination

overhead

Stable SCN

progression and

low interconnect

usage

Maintain session

affinity; reduce

unnecessary node

switching

Inter-Instance

Block Migration

Cycle

Workflows

alternate

between nodes

during

execution

Increased cache

fusion traffic and

transient commit

delays

Repeated block

pings between

instances

Align UI and

application routing

to preserve node

locality

Commit

Synchronization

Burst Congestion

Many sessions

commit at

similar

moments

Short-lived cluster-

wide

synchronization

stalls

SCN

advancement

pauses followed

by sudden catch-

up

Introduce micro-

staggering or

batching of commit

operations

4. Conclusion

Distributed transaction consistency in Oracle RAC is governed by the interplay between cache fusion

operations, global lock orchestration, and the timing alignment of workloads across cluster nodes. The

findings show that contention and synchronization costs arise not simply from data access conflicts

but from how frequently transactions shift execution between RAC instances and how closely commit

Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473

 Vol 2, Issue 1, 2023

29

operations cluster in time. When transaction locality is preserved, consistency is maintained with

minimal overhead; when sessions frequently cross node boundaries or converge on shared commit

points, the cluster experiences heightened coordination activity that manifests as transient latency

spikes and increased interconnect traffic. These behaviors underscore that consistency stability is an

emergent property of workload timing and routing, not just a function of SQL structure or indexing

strategy.

The results also highlight the importance of deliberate workload orchestration in RAC environments.

Aligning related transactions to remain on the same node, staggering commit operations where

feasible, and separating analytic reads from write-intensive OLTP traffic can significantly reduce

cross-node contention. These adjustments do not require changes to the logical application model and

can be implemented at the routing, connection pooling, or architectural deployment layer. In this

sense, achieving strong distributed consistency at scale is a joint responsibility of the application tier

and the RAC cluster configuration, where system behavior improves most when application

workflows and RAC coordination mechanisms are tuned together.

References

1. Haque, A. H. A. S. A. N. U. L., Anwar, N. A. I. L. A., Kabir, S. M. H., Yasmin, F. A. R. Z. A. N.

A., Tarofder, A. K., & MHM, N. (2020). Patients decision factors of alternative medicine

purchase: An empirical investigation in Malaysia. International Journal of Pharmaceutical

Research, 12(3), 614-622.

2. Ahmed, J., Mathialagan, A. G., & Hasan, N. (2020). Influence of smoking ban in eateries on

smoking attitudes among adult smokers in Klang Valley Malaysia. Malaysian Journal of Public

Health Medicine, 20(1), 1-8.

3. Doustjalali, S. R., Gujjar, K. R., Sharma, R., & Shafiei-Sabet, N. (2016). Correlation between

body mass index (BMI) and waist to hip ratio (WHR) among undergraduate students. Pakistan

Journal of Nutrition, 15(7), 618-624.

4. Arzuman, H., Maziz, M. N. H., Elsersi, M. M., Islam, M. N., Kumar, S. S., Jainuri, M. D. B.

M., & Khan, S. A. (2017). Preclinical medical students perception about their educational

environment based on DREEM at a Private University, Malaysia. Bangladesh Journal of

Medical Science, 16(4), 496-504.

5. Jamal Hussaini, N. M., Abdullah, M. A., & Ismail, S. (2011). Recombinant Clone ABA392

protects laboratory animals from Pasteurella multocida Serotype B. African Journal of

Microbiology Research, 5(18), 2596-2599.

6. Hussaini, J., Nazmul, M. H. M., Masyitah, N., Abdullah, M. A., & Ismail, S. (2013). Alternative

animal model for Pasteurella multocida and Haemorrhagic septicaemia. Biomedical

Research, 24(2), 263-266.

7. Nazmul, M. H. M., Salmah, I., Jamal, H., & Ansary, A. (2007). Detection and molecular

characterization of verotoxin gene in non-O157 diarrheagenic Escherichia coli isolated from

Miri hospital, Sarawak, Malaysia. Biomedical Research, 18(1), 39-43.

8. Nazmul, M. H. M., Fazlul, M. K. K., Rashid, S. S., Doustjalali, S. R., Yasmin, F., Al-Jashamy,

K., ... & Sabet, N. S. (2017). ESBL and MBL genes detection and plasmid profile analysis from

Pseudomonas aeruginosa clinical isolates from Selayang Hospital, Malaysia. PAKISTAN

JOURNAL OF MEDICAL & HEALTH SCIENCES, 11(3), 815-818.

9. MKK, F., MA, R., Rashid, S. S., & MHM, N. (2019). Detection of virulence factors and beta-

lactamase encoding genes among the clinical isolates of Pseudomonas aeruginosa. arXiv

preprint arXiv:1902.02014.

30

10. Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Integration of Low Code Workflow Builders

with Enterprise ETL Engines for Unified Data Processing. International Journal of

Communication and Computer Technologies, 7(1), 47-51.

11. Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Adaptive Data Integration Architectures for

Handling Variable Workloads in Hybrid Low Code and ETL Environments. International

Journal of Communication and Computer Technologies, 7(1), 36-41.

12. Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Evaluation of Component Based Low Code

Frameworks for Large Scale Enterprise Integration Projects. International Journal of

Communication and Computer Technologies, 8(2), 36-41.

13. Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Model Driven Development Approaches for

Accelerating Enterprise Application Delivery Using Low Code Platforms. International

Journal of Communication and Computer Technologies, 8(2), 42-47.

14. Keshireddy, S. R. (2021). Oracle APEX as a front-end for AI-driven financial forecasting in

cloud environments. The SIJ Transactions on Computer Science Engineering & its Applications

(CSEA), 9(1), 19-23.

15. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Methods for Enhancing Data Quality

Reliability and Latency in Distributed Data Engineering Pipelines. The SIJ Transactions on

Computer Science Engineering & its Applications, 9(1), 29-33.

16. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Extending Low Code Application Builders for

Automated Validation and Data Quality Enforcement in Business Systems. The SIJ

Transactions on Computer Science Engineering & its Applications, 9(1), 34-37.

17. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Automation Strategies for Repetitive Data

Engineering Tasks Using Configuration Driven Workflow Engines. The SIJ Transactions on

Computer Science Engineering & its Applications, 9(1), 38-42.

18. Keshireddy, S. R. (2022). Deploying Oracle APEX applications on public cloud: Performance

& scalability considerations. International Journal of Communication and Computer

Technologies, 10(1), 32-37.

19. Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R.

(2022). Unified Workflow Containers for Managing Batch and Streaming ETL Processes in

Enterprise Data Engineering. The SIJ Transactions on Computer Science Engineering & its

Applications, 10(1), 10-14.

20. Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R.

(2022). Leveraging Metadata Driven Low Code Tools for Rapid Construction of Complex ETL

Pipelines. The SIJ Transactions on Computer Science Engineering & its Applications, 10(1),

15-19.

21. Keshireddy, S. R., & Kavuluri, H. V. R. (2022). Combining Low Code Logic Blocks with

Distributed Data Engineering Frameworks for Enterprise Scale Automation. The SIJ

Transactions on Computer Science Engineering & its Applications, 10(1), 20-24.

