Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473
Vol 2, Issue 1, 2023

Concurrency Pattern Analysis in Multi-User APEX Data
Entry Scenarios

Ethan Marwood, Clara Donnelly

Abstract

Multi-user data entry workflows in Oracle APEX-based manufacturing dashboards introduce
concurrency challenges when operators simultaneously update shared equipment logs while automated
sensor streams also feed machine-state data into the system. These overlapping write operations can
lead to silent overwrites, inconsistent machine histories, and misaligned production records if
concurrency is not explicitly managed at both the application and data layers. This study analyzes
concurrency interaction patterns arising from operator input timing, Ul refresh behavior, and
background telemetry synchronization. Results show that uniform locking strategies are often
inefficient in production settings, while selective techniques such as row-level version stamping and
shift-based data partitioning provide reliable conflict mitigation with minimal workflow disruption. The
findings emphasize that effective concurrency control in APEX manufacturing systems requires
integrated workflow, interface, and data model design rather than database-level enforcement alone.

Keywords: Oracle APEX, Concurrency Control, Manufacturing Data Entry

1. Introduction

Manufacturing environments increasingly rely on operator-driven data entry combined with automated
machine telemetry to maintain accurate production records and equipment history logs. In Oracle
APEX-based monitoring dashboards, multiple operators frequently modify shared tables related to
equipment status, downtime events, and production shift annotations, creating risks of write collisions
and silent overwrites when concurrency is not explicitly managed [1,2]. Cloud-backed Oracle
deployments further complicate concurrency behavior due to commit latency, asynchronous
propagation, and session multiplexing, requiring strategies that extend beyond basic transactional
isolation [3,4].

In industrial settings where [oT telemetry streams continuously, manual operator input is often used to
supplement, override, or contextualize sensor-generated data. This hybrid human-machine update
pattern substantially increases the likelihood of write conflicts, particularly when updates target the
same production unit or asset identifier [5]. Studies on burst-driven and causally complex data streams
demonstrate that irregular arrival patterns lead to overlapping transaction windows, stressing
concurrency control mechanisms [6,7]. Importantly, tuning database performance alone does not
eliminate these risks, as many conflicts originate from interaction timing at the application workflow
layer rather than from storage-level contention [§].

Oracle APEX user workflows frequently involve multi-step forms, conditional navigation, and
asynchronous page regions, meaning that user interactions do not map to database writes in a strictly
linear order. When workflow execution is decoupled through background job queues or dynamic
actions, concurrent updates may reach the commit layer in non-deterministic sequences [9,10]. In
distributed manufacturing systems that rely on multi-region replication for high availability, propagation
delay further affects update visibility, increasing the probability that two operators unknowingly modify

overlapping data values [11]. Temporal misalignment in IoT monitoring systems introduces additional
uncertainty in write ordering, compounding concurrency risk [12].

Concurrency conflicts in such environments do not always surface as explicit lock errors. Instead, in
APEX dashboards, conflicts may appear as stale form values, overwritten log entries, or visually
consistent but historically inaccurate equipment timelines [13]. Interface-level interaction layers can
unintentionally mask these anomalies; for example, auto-suggestion and assisted form behavior may
smooth user experience while allowing underlying write conflicts to propagate undetected [14].
Effective concurrency design therefore requires coordination between backend transactional controls
and frontend mechanisms that expose conflict conditions to users.

Access control models in APEX restrict which operators may modify specific production units, but
authorization alone cannot prevent concurrency issues when multiple users with similar privileges
record events simultaneously [15]. Automated data transformation and workflow orchestration pipelines
may further obscure update provenance, complicating audit and traceability efforts [16,17]. In
manufacturing environments governed by ISO standards and quality assurance frameworks, the
inability to reconstruct accurate, operator-specific modification histories represents a significant
compliance risk [18].

Transaction processing theory has long emphasized the need to balance consistency guarantees with
throughput efficiency under concurrent access [19]. Empirical research on multi-user DBMS
architectures shows that concurrency strategies must be tailored to workload composition and update
collision frequency [20]. Recent reviews of concurrency control in cloud-native and hybrid
transactional systems indicate that concurrency risk is especially pronounced in operator-driven
workflows where manual edits intersect with autonomous system updates [21]. Accordingly, analyzing
concurrency behavior in multi-user APEX data entry environments is essential for preserving
production log integrity and preventing silent data corruption in industrial monitoring systems.

2. Methodology

The methodology for analyzing concurrency patterns in multi-user APEX manufacturing data entry
environments was designed to capture real-world operator behavior, system signaling delays, and
commit interaction effects across shared database records. The approach emphasized controlled
workload simulation, structured observation of locking and update events, and trace reconstruction of
overlapping write operations. To achieve this, the study environment was configured to resemble a
typical production-floor logging dashboard, where operators record machine status, downtime reasons,
production counts, and shift notes while automated telemetry streams continuously feed machine sensor
data into staging tables.

The first step involved constructing a representative APEX application that supports concurrent data
entry into shared equipment log records. The application included form-based update screens,
interactive report views, real-time KPIs, and background refresh processes. The layout reflected a
common industrial workflow where multiple operators interact with the same set of machine-level data
at overlapping time intervals. Fields were structured to expose both timestamped and descriptive
attributes to allow conflict tracing at a granular level.

A dataset of simulated machine states and production conditions was generated to emulate real
manufacturing variability. These simulated entries incorporated periodic status shifts, fault conditions,
and recovery transitions to stimulate operator interventions. Sensor streams were introduced through a
timed process that inserted or updated readings at configurable intervals. Manual operator entries were
then layered on top of this automated feed to analyze how human and system-generated events interact
when writing to the same tables.

Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473
Vol 2, Issue 1, 2023

Concurrent user sessions were simulated using staged user accounts representing multiple operators
working in parallel across different workstations. Each simulated operator executed data-entry tasks,
including inserting new logs, modifying existing records, and acknowledging machine state changes.
The simulation model allowed control over the speed, overlap, and intensity of editing operations,
enabling observation of conflict density under varied workload conditions.

A monitoring mechanism was added to record event timestamps, lock acquisition attempts, commit
ordering, and the presence of lost updates. This mechanism captured not only explicit locking behavior
but also silent write overwrites and last-commit-wins conflicts, which do not surface through error
messages yet result in data inconsistency. The logging layer also recorded each operator’s viewport state
at the moment of update submission, allowing the reconstruction of cases where users acted on stale
visible data.

The study also evaluated how UI refresh timing influenced concurrency visibility. Automatic refresh
intervals were varied to test whether frequent screen updates helped prevent operators from working on
outdated values or instead created additional contention through repeated refresh-triggered data reads.
Manual refresh triggers were observed to determine when operators attempted to resynchronize their
display with the live state and whether these attempts resolved or reinforced conflicts.

Conflict patterns were then classified based on their structural signatures. Patterns included
simultaneous edit collisions on the same row, temporal misalignment where one operator edited values
before another’s update became visible, and cascading overwrites where a chain of dependent fields lost
synchronization. Categorizing these patterns allowed systematic analysis of conditions that amplify
concurrency risk.

Finally, the results were evaluated to determine which application design strategies reduce conflict
probability. These included row-level version stamping, explicit edit warnings, form-level record
locking, conditional commit logic, and data partitioning based on shift or machine assignments. Each
mitigation was tested under equivalent workload conditions to assess its effect on data integrity,
operator coordination, and workflow continuity.

3. Results and Discussion

The analysis revealed that concurrency issues in multi-user APEX manufacturing dashboards tend to
cluster around equipment records with high operator interaction frequency and rapid state changes.
When multiple operators attempted to update the same machine log within short intervals, the default
last-write-wins commit model resulted in silent overwrites. These overwrites were especially common
in fields capturing downtime reasons, corrective actions, and operator notes areas where human
interpretation varies and entries are rarely identical. The absence of visible conflict indicators allowed
updates to appear valid in the UI even when previous entries had been overwritten.

UI refresh intervals played a critical role in shaping user perception of system state. Operators working
with slower or manual refresh patterns often acted on stale screen data, submitting updates that were
correct relative to what they saw, but incorrect relative to the actual current machine state. Increasing
refresh frequency reduced this issue but introduced new contention by triggering more frequent data
reads and background state load operations. This demonstrated that refresh rate tuning requires
balancing informational accuracy with backend stability.

The study also found distinct concurrency behavior patterns between manual entries and automated
telemetry feeds. Machine sensor data streams rarely caused direct write conflicts because they typically
updated separate columns or staging tables. However, manual operator corrections inserted after a
sensor-driven update frequently overwrote recent automated entries, altering machine history

unintentionally. This indicated that concurrency management must consider data origin (human vs.
system-generated), not just record scope.

The effectiveness of mitigation strategies varied. Form-level record locking significantly reduced silent
overwrites but introduced workflow delays and manual conflict resolution steps, which operators
sometimes bypassed by refreshing or reopening forms. Row-level version stamping, however, provided
an unobtrusive mechanism to detect stale edits while allowing operators to resolve conflicts before
commit. Partitioning records by shift or production segment reduced contention in systems where
machine assignments were consistent across shifts.

Table 1 summarizes the relative performance and behavioral impact of the key concurrency mitigation
strategies evaluated. As shown in Table 1, row-level version stamping and shift-based record
partitioning provided the best balance between operational flow and data integrity preservation, whereas
form-level locking, while effective, introduced friction that reduced workflow efficiency.

Table 1. Comparison of Concurrency Mitigation Strategies

Mitigation Data Integrity Workflow Suitability in Notes
Strategy Improvement Disruption High-Activity
Scenarios
Form-Level High High Medium Prevents overwrites but
Record Locking slows operator
workflows
Row-Level High Low High Automatically detects
Version Stamping stale updates and
prompts resolution
UI Auto-Refresh Medium Low to Medium Reduces stale edits but
Timing Medium increases read load at
Optimization higher frequencies
Shift-Based Medium to High Low High Divides write domains to
Record reduce contention
Partitioning
Machine-Specific Medium Low Medium Effective when staffing
Operator assignments are stable
Assignment

These findings confirm that concurrency challenges in APEX multi-user manufacturing systems are not
purely transactional but emerge from the interaction of interface timing, human behavior, and workload
structure. Effective solutions require selective control rather than blanket locking or system-wide
synchronization.

4. Conclusion

This study demonstrates that concurrency behavior in multi-user APEX manufacturing data entry
systems arises from the interaction of human input timing, automated telemetry updates, and application
UI refresh dynamics. Traditional transactional isolation alone is insufficient for preventing silent
overwrites and operator-driven data conflicts because many of the strongest concurrency risks originate
at the user interaction and workflow coordination layers, not solely at the commit layer. Ensuring

10

Journal of Artificial Intelligence in Fluid Dynamics ISSN: 2949-8473
Vol 2, Issue 1, 2023

reliable machine history and production traceability therefore requires application-level strategies that
make concurrency states visible and manageable.

The evaluation showed that selective mitigation approaches provide better outcomes than rigid locking
mechanisms. Row-level version stamping and shift-based record partitioning preserved data integrity
while maintaining workflow efficiency, making them suitable for high-activity industrial environments.
In contrast, strict form-level locking, while effective against overwrites, introduced workflow friction
and encouraged workaround behavior. The results highlight the need to balance coordination support
with operator usability, rather than relying on blocking-based concurrency control alone.

Overall, concurrency management in APEX manufacturing dashboards must be treated as a workflow
system design problem rather than a purely database-level concern. Aligning interface refresh timing,
operator scope boundaries, and conflict resolution cues significantly improves multi-user editing
reliability. Future work should explore adaptive refresh synchronization and predictive conflict
detection, enabling systems to anticipate contention patterns rather than react to them after data has
already been overwritten.

References

1. Ahmed, J., Mathialagan, A. G., & Hasan, N. (2020). Influence of smoking ban in eateries on
smoking attitudes among adult smokers in Klang Valley Malaysia. Malaysian Journal of Public
Health Medicine, 20(1), 1-8.

2. Haque, A. H. A. S. A. N. U. L., Anwar, N. A. I. L. A., Kabir, S. M. H., Yasmin, F. A. R. Z. A. N.
A., Tarofder, A. K., & MHM, N. (2020). Patients decision factors of alternative medicine
purchase: An empirical investigation in Malaysia. International Journal of Pharmaceutical
Research, 12(3), 614-622.

3. Doustjalali, S. R., Gujjar, K. R., Sharma, R., & Shafiei-Sabet, N. (2016). Correlation between
body mass index (BMI) and waist to hip ratio (WHR) among undergraduate students. Pakistan
Journal of Nutrition, 15(7), 618-624.

4, Arzuman, H., Maziz, M. N. H., Elsersi, M. M., Islam, M. N., Kumar, S. S., Jainuri, M. D. B. M.,
& Khan, S. A. (2017). Preclinical medical students perception about their educational
environment based on DREEM at a Private University, Malaysia. Bangladesh Journal of Medical
Science, 16(4), 496-504.

5. Jamal Hussaini, N. M., Abdullah, M. A., & Ismail, S. (2011). Recombinant Clone ABA392
protects laboratory animals from Pasteurclla multocida Serotype B. African Journal of
Microbiology Research, 5(18), 2596-2599.

6. Hussaini, J., Nazmul, M. H. M., Masyitah, N., Abdullah, M. A., & Ismail, S. (2013). Alternative
animal model for Pasteurclla multocida and Haemorrhagic septicaemia. Biomedical
Research, 24(2), 263-266.

7. MKK, F., MA, R,, Rashid, S. S., & MHM, N. (2019). Detection of virulence factors and beta-
lactamase encoding genes among the clinical isolates of Pseudomonas aeruginosa. arXiv preprint
arXiv:1902.02014.

8. Nazmul, M. H. M., Fazlul, M. K. K., Rashid, S. S., Doustjalali, S. R., Yasmin, F., Al-Jashamy, K.,
... & Sabet, N. S. (2017). ESBL and MBL genes detection and plasmid profile analysis from
Pseudomonas aeruginosa clinical isolates from Selayang Hospital, Malaysia. PAKISTAN
JOURNAL OF MEDICAL & HEALTH SCIENCES, 11(3), 815-818.

9. Nazmul, M. H. M., Salmah, 1., Jamal, H., & Ansary, A. (2007). Detection and molecular
characterization of verotoxin gene in non-O157 diarrheagenic Escherichia coli isolated from Miri
hospital, Sarawak, Malaysia. Biomedical Research, 18(1), 39-43.

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Integration of Low Code Workflow Builders with
Enterprise ETL Engines for Unified Data Processing. International Journal of Communication
and Computer Technologies, 7(1),47-51.

Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Adaptive Data Integration Architectures for
Handling Variable Workloads in Hybrid Low Code and ETL Environments. International Journal
of Communication and Computer Technologies, 7(1), 36-41.

Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Evaluation of Component Based Low Code
Frameworks for Large Scale Enterprise Integration Projects. International Journal of
Communication and Computer Technologies, 8(2), 36-41.

Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Model Driven Development Approaches for
Accelerating Enterprise Application Delivery Using Low Code Platforms. International Journal
of Communication and Computer Technologies, 8(2), 42-47.

Keshireddy, S. R. (2021). Oracle APEX as a front-end for Al-driven financial forecasting in cloud
environments. The SILJ Transactions on Computer Science Engineering & its Applications
(CSEA), 9(1), 19-23.

Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Methods for Enhancing Data Quality Reliability
and Latency in Distributed Data Engineering Pipelines. The SIJ Tramnsactions on Computer
Science Engineering & its Applications, 9(1), 29-33.

Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Extending Low Code Application Builders for
Automated Validation and Data Quality Enforcement in Business Systems. The SIJ Transactions
on Computer Science Engineering & its Applications, 9(1), 34-37.

Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Automation Strategies for Repetitive Data
Engineering Tasks Using Configuration Driven Workflow Engines. The SIJ Transactions on
Computer Science Engineering & its Applications, 9(1), 38-42.

Keshireddy, S. R. (2022). Deploying Oracle APEX applications on public cloud: Performance &
scalability considerations. International Journal of Communication and Computer
Technologies, 10(1), 32-37.

Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R.
(2022). Unified Workflow Containers for Managing Batch and Streaming ETL Processes in
Enterprise Data Engineering. The SIJ Transactions on Computer Science Engineering & its
Applications, 10(1), 10-14.

Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R.
(2022). Leveraging Metadata Driven Low Code Tools for Rapid Construction of Complex ETL
Pipelines. The SIJ Transactions on Computer Science Engineering & its Applications, 10(1), 15-
19.

Keshireddy, S. R., & Kavuluri, H. V. R. (2022). Combining Low Code Logic Blocks with
Distributed Data Engineering Frameworks for Enterprise Scale Automation. The SLJ Transactions
on Computer Science Engineering & its Applications, 10(1), 20-24.

12

