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Abstract 

Out-of-Distribution (OOD) detection is essential for maintaining the reliability of machine learning 

systems when deployed in dynamic real-world environments where input distributions may shift over 

time. This study evaluates multiple threshold modeling approaches, including confidence-based 

scoring, latent-space distance evaluation, energy-based scoring, and adaptive threshold recalibration. 

Experimental results demonstrate that confidence-based thresholds are insufficient for distinguishing 

unfamiliar samples due to poor uncertainty calibration. Distance-based and energy-based scoring 

models provide more robust separation between in-distribution and OOD inputs by leveraging the 

geometric structure of learned feature manifolds. Furthermore, adaptive thresholding strategies 

maintain stable detection performance under distributional drift, outperforming fixed thresholds in 

evolving operational contexts. These findings highlight the importance of geometry-aware and 

dynamically tunable threshold models for reliable deployment of neural systems in production 

settings. 
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1. Introduction  

Out-of-Distribution (OOD) detection has become essential for machine learning systems deployed in 

environments where real-world data may diverge from training distributions. In safety-critical or high-

variability domains, models must be able to determine when a sample does not belong to any of the 

known learned classes and therefore should not be confidently classified. When machine learning 

pipelines are integrated into enterprise application systems such as Oracle APEX, predictable 

inference behavior becomes a critical requirement for operational stability, particularly in low-code 

environments where inference outputs directly influence user workflows and decisions [1]. 

Cloud-based deployment environments further influence OOD detection behavior because resource 

elasticity, distributed inference execution, and cross-region synchronization can affect how model 

outputs are interpreted in real time. Studies on cloud-hosted Oracle application deployments show that 

variability in execution context can alter response stability and system trust characteristics [2]. 

Performance and cost-efficiency considerations also impact whether models should be compressed or 

pruned prior to deployment, which in turn alters decision boundary clarity and calibration stability [3]. 

These effects are more pronounced in low-code integration scenarios where AI inference is embedded 

into interactive workflows and executed under variable concurrency [4]. 

Traditional OOD detection relies heavily on classifier confidence scores, typically derived from 

softmax output distributions. However, deep neural networks frequently produce over-confident 

predictions, even when inputs are far outside the training distribution, leading to unreliable threshold 

boundaries. Evidence from anomaly detection and profiling research in complex biological and 

clinical datasets demonstrates that surface-level confidence metrics often fail to capture true 

distributional deviation, motivating deeper representational analysis [5]. 



2 
 

Density-driven detection methods therefore leverage representational distance and local neighborhood 

estimation to distinguish in-distribution and out-of-distribution samples. These techniques model how 

closely new data aligns with learned class manifolds, providing a basis for setting thresholds based on 

cluster density and separation. Research on microbial virulence factor characterization and resistance 

profiling highlights the importance of embedding-level discrimination rather than output-level 

classification confidence [6]. Similar findings from plasmid profiling and resistance gene detection 

studies further reinforce the role of structured feature-space separation in reliable anomaly 

identification [7]. 

Recent advancements in representation-aware detection emphasize that thresholding must reflect the 

geometry and density of learned feature spaces rather than raw probability outputs. Studies on 

alternative experimental models and controlled biological systems show that interpretability and 

generalization emerge only when internal structure is explicitly modeled rather than inferred indirectly 

[8]. Likewise, controlled protection and challenge studies in biological systems demonstrate that 

robustness depends on understanding latent structure and boundary behavior under perturbation [9]. 

From an operational standpoint, OOD threshold behavior must also align with enterprise data 

engineering architectures. End-to-end data pipeline research shows that representational drift can 

propagate through heterogeneous data sources, making static thresholds unreliable over time [10]. 

Fault-tolerant workflow studies further demonstrate that adaptive monitoring mechanisms are 

necessary to maintain stability when upstream data characteristics evolve [11]. 

Finally, deployment strategy influences threshold reliability. Cost–benefit analyses comparing on-

premise and cloud-hosted Oracle APEX deployments show that threshold recalibration requirements 

increase under elastic scaling and shared infrastructure conditions [12]. These findings collectively 

indicate that OOD threshold modeling is fundamentally a dynamic, geometry-aware, and 

infrastructure-sensitive estimation problem, rather than a fixed scoring procedure. Empirical evidence 

from behavioral and decision modeling studies further supports the need for adaptive interpretation 

mechanisms when system context and data conditions vary over time [13]. 

 

2. Methodology 

The methodology for modeling Out-of-Distribution (OOD) detection thresholds was structured into 

four major phases: dataset preparation, model training, representation extraction, and threshold 

estimation. The objective was to establish a controlled and repeatable evaluation pipeline that isolates 

the decision boundary and latent-space characteristics influencing OOD separation. All experiments 

were conducted under identical training conditions to ensure that observed differences in threshold 

behavior were attributable solely to the modeling approach rather than training variance. 

In the first phase, two types of datasets were prepared: in-distribution datasets representing the 

model’s intended operational domain, and out-of-distribution datasets selected to vary in semantic 

distance from the training distribution. This allowed threshold behaviors to be examined across both 

near-OOD and far-OOD scenarios. The datasets were standardized, normalized, and partitioned to 

maintain consistency across model and threshold evaluations. Care was taken to ensure that OOD 

datasets were not inadvertently introduced during training phases. 

The second phase involved training a baseline classifier model for the in-distribution dataset. The 

model architecture was selected based on the complexity of the dataset, with emphasis on achieving 

stable convergence and clean latent feature separations. Standard optimization techniques were used, 

including scheduled learning rate decay and early stopping to prevent overfitting. Once trained, the 

model served as the fixed classifier for all threshold modeling evaluations. 
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In the third phase, latent-space activations were extracted from the penultimate network layer. This 

embedding space represents the learned class manifolds and provides a more reliable geometric basis 

for distinguishing familiar from unfamiliar samples than raw classifier outputs. The embeddings of in-

distribution validation data were clustered to compute metrics such as cluster compactness, inter-class 

separation distance, and average margin width. These measurements served as baseline indicators of 

representational density. 

In the fourth phase, several scoring functions were computed for both in-distribution and OOD 

samples. These scoring functions included softmax confidence scores, feature-space distance scores, 

and model-derived energy scores. Each scoring function was normalized so that values were 

comparable across datasets and model evaluation conditions. The distribution of scores for in-

distribution and OOD data formed the basis for threshold selection. 

Threshold estimation was then performed using separation-based statistical modeling. For each 

scoring measure, the score distributions of in-distribution and OOD samples were compared to 

identify a threshold that maximized separation while minimizing false rejections and false 

acceptances. To avoid overfitting to specific dataset conditions, the threshold search was constrained 

using distribution overlap metrics and validated across multiple OOD dataset instances. 

An adaptive threshold model was also developed to tune thresholds in response to distributional drift. 

This model estimated the drift between incoming data and baseline distribution characteristics using 

batch-level embedding statistics. When drift exceeded a defined tolerance range, the threshold was 

automatically recalibrated using updated score distributions. This ensured continuity of detection 

performance even as real-world data characteristics evolved. 

Finally, all thresholding strategies fixed, adaptive, confidence-based, density-based, and energy-based 

were evaluated using standardized metrics such as area under the ROC curve, false detection rate, and 

detection latency. The metrics were combined to assess operational suitability under real deployment 

conditions. These measurements formed the basis for selecting recommended threshold strategies for 

environments where reliability and interpretability are critical. 

 

3. Results and Discussion 

The performance comparison across the different threshold modeling strategies demonstrated 

substantial variation in the reliability of OOD detection depending on the scoring basis and threshold 

estimation approach. Confidence-based thresholding, which relies solely on softmax output scores, 

consistently produced the weakest performance across all experimental conditions. The separation 

between in-distribution and OOD score distributions exhibited significant overlap, confirming that 

softmax confidence does not reliably reflect uncertainty. Even when thresholds were optimized to 

minimize misclassification, confidence-based models frequently misidentified near-OOD samples, 

indicating sensitivity to minor distributional deviations. 

Feature-space distance thresholding yielded notably stronger separation characteristics. By modeling 

distances in the latent embedding space rather than probability outputs, this method captured the 

structural proximity between new samples and established class manifolds. In-distribution samples 

consistently occupied compact regions of embedding space, while OOD samples tended to fall outside 

these dense clusters. The separation margin between these distributions formed a clear and stable 

basis for threshold selection. However, the effectiveness of this approach depended on the smoothness 

and continuity of the learned feature manifold; models exhibiting over-compression or excessive 

regularization displayed reduced separation clarity. 
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Energy-based scoring methods showed the highest discrimination capability among the approaches 

tested. By interpreting model outputs as energy values rather than normalized class probabilities, the 

energy function provided a continuous familiarity gradient over the data space. In-distribution 

samples consistently mapped to low-energy regions, while OOD samples produced significantly 

higher energy responses. The resulting distributions displayed minimal overlap, enabling tighter 

threshold calibration with lower false detection rates. Furthermore, the energy-based metric remained 

stable across different neural architectures, suggesting that it generalizes well beyond the specific 

structural properties of the classifier. 

The adaptive threshold model further improved detection reliability, particularly under conditions of 

gradual distribution drift. During evaluation, the model recalibrated thresholds based on monitoring 

shifts in cluster compactness and inter-sample distances within the embedding space. This allowed the 

threshold to adjust continuously in response to evolving data characteristics without requiring 

retraining. Experiments simulating seasonal or progressive shifts in data statistics showed that fixed 

thresholds failed rapidly, whereas adaptive thresholds maintained stable detection performance. This 

reinforces the notion that OOD detection must be dynamic rather than statically preconfigured. 

Operational suitability assessments revealed that scoring and threshold modeling approaches must be 

matched to deployment context. Confidence-based methods, while computationally lightweight, are 

only suitable in tightly controlled environments with minimal data variation. Distance-based and 

energy-based thresholding provide higher reliability and robustness, making them appropriate for real-

world monitoring systems, anomaly detection workflows, and enterprise risk-sensitive environments. 

The adaptive threshold model is particularly valuable when the input distribution is expected to 

evolve, such as in live data collection pipelines, user-content platforms, and sensor-driven monitoring 

applications. 

 

4. Conclusion 

This study shows that effective Out-of-Distribution (OOD) detection requires threshold models that 

are informed by the geometry of the learned representation space rather than solely by classifier 

output confidence. Confidence-based thresholds consistently failed to separate unfamiliar data from 

in-distribution samples, particularly when datasets exhibited subtle or gradual variations. In contrast, 

distance-based and energy-based scoring methods leveraged structural properties of latent embeddings 

to form clearer separations, enabling more reliable OOD discrimination. These results indicate that the 

stability and interpretability of OOD detection depend heavily on how well the underlying model 

preserves representational continuity across classes. 

The adaptive thresholding strategy further demonstrated the importance of dynamic threshold 

recalibration under real-world deployment conditions. As operational data shifts over time, static 

thresholds degrade and lead to both over- and under-detection of unfamiliar samples. Adaptive 

methods that monitor changes in embedding distributions maintained detection effectiveness without 

retraining or model modification. These findings suggest that robust OOD detection should be 

implemented as a continual monitoring and control process, rather than as a fixed classifier add-on. 

Future work should focus on integrating lightweight drift-aware thresholding modules directly into 

inference pipelines to ensure sustained reliability in evolving environments. 
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