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Abstract 
Post-hoc explanation methods are widely used to interpret complex machine learning models, yet the 
fidelity of these explanation show accurately they reflect the model’s true reason in gremains difficult to 
assess. Explanations that are easy to understand may oversimplify or distort the decision logic, while 
highly detailed explanations may be accurate but unusable in practice. This study presents a structured 
evaluation framework for measuring explainability fidelity through local sensitivity testing, global 
attribution coherence, representation-space alignment, and causal influence validation. Experimental 
results show that many commonly used attribution techniques generate persuasive but mechanistically 
incorrect explanations, particularly in deep models with distributed internal representations. Methods 
that incorporate causal perturbation and representation-level reasoning exhibit significantly higher 
fidelity. Additionally, deployment tests in cloud-integrated Oracle APEX environments reveal that 
explanation stability depends on system execution context, reinforcing that fidelity is both a modeling and 
operational concern. The findings provide a foundation for selecting and validating post-hoc 
interpretability techniques in high-stakes enterprise applications. 
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1. Introduction 
Explainability has become a central requirement in modern AI systems, particularly as they are deployed 
in domains where decisions carry operational, financial, or ethical implications. While numerous post-hoc 
interpretation techniques such as SHAP, LIME, saliency mappings, feature attributions, and counterfactual 
reasoning have been developed to approximate the internal logic of complex models, the fidelity of these 
explanations remains uncertain. Fidelity refers to how accurately an explanation reflects the model’s 
actual decision-making process rather than providing a plausible but misleading narrative, a challenge 
comparable to interpreting correlated health indicators where apparent simplicity can obscure 
underlying causal structure [1,2]. Poor fidelity can create a false sense of transparency, leading 
stakeholders to trust or act upon model outputs without understanding their true basis. Similar risks have 
been observed in experimental protection studies, where surface-level indicators failed to capture deeper 
system behavior, resulting in overconfident conclusions [3,4]. Therefore, evaluating the faithfulness of 
post-hoc explanations is essential to ensuring that interpretability methods enhance, rather than distort, 
user understanding. 
Existing explainability approaches often prioritize interpretability the ease with which an explanation can 
be understood over fidelity, which determines whether the explanation truthfully represents model 
reasoning. This mirrors challenges in alternative experimental modeling, where simplified 
representations improve accessibility but may diverge from actual system dynamics under realistic 
conditions [5,6]. Increasing interpretability by simplifying explanations may remove critical model 
dependencies, while maximizing fidelity may produce explanations too complex for human use. This 
tradeoff underscores the need for structured evaluation metrics that balance clarity and accuracy without 
artificially inflating user confidence in the model, a concern also evident in systems exhibiting multiple 
interacting causal factors [7,8]. The challenge is further amplified in deep neural architectures, where 
distributed representations and non-linear feature interactions make direct causal tracing difficult, 
resembling high-dimensional biological systems with interacting resistance and adaptation mechanisms 
[9-11]. 
High-stakes applications, such as financial supervision dashboards, autonomous policy enforcement 
engines, and enterprise decision-support platforms, rely on explainable AI to maintain human oversight. 
In environments where Oracle APEX serves as the orchestration layer for AI-driven recommendations, 
explanation fidelity directly affects workflow reliability, audit traceability, and governance assurance 
[12,13]. Prior work on low-code enterprise application development highlights that transparency and 
predictability are essential to sustaining user trust when automated insights influence operational 
decisions [14,15]. Low-fidelity explanations can obscure systemic bias or hidden failure conditions, 
leading to incorrect decisions. Studies in fault-tolerant enterprise workflow design further demonstrate 
that unreliable interpretability mechanisms can propagate instability across dependent processes [16]. 
User trust and explainability fidelity are also shaped by how explanations are perceived within structured 
interaction environments. Research on educational and institutional systems shows that perceived 
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coherence, clarity, and consistency strongly influence confidence in system outputs, even when underlying 
complexity remains high [17-19]. These findings translate directly to enterprise AI platforms, where 
explainability failures often result in workflow abandonment, decision hesitation, or resistance to 
automation [20,21]. 
Data infrastructure further affects explanation fidelity. Cloud-based Oracle database ecosystems introduce 
distributed workload execution, adaptive optimization behavior, and variable data access paths that 
influence both model inference and explanation generation. In such environments, the ability to detect, 
trace, and reproduce decision rationales becomes critical [22-26]. Practices drawn from molecular 
detection and characterization studies emphasize the importance of precise attribution and 
reproducibility, providing a useful parallel for designing auditable and faithful explainability mechanisms 
in AI systems [27-33]. 
This study presents a structured framework for evaluating explainability fidelity in post-hoc 
interpretation methods applied to complex models deployed in cloud-integrated enterprise 
environments. The objective is to define fidelity metrics that are model-agnostic, platform-relevant, and 
behaviorally grounded, ensuring that explanations accurately convey how decisions are generated rather 
than providing simplified or misleading substitutes. By integrating representation-level consistency 
checks, perturbation sensitivity analysis, and workflow-context alignment evaluation, the framework aims 
to produce explainability assessments that are both scientifically rigorous and operationally meaningful. 
 
2. Methodology 
The methodology for evaluating explainability fidelity in post-hoc interpretation models was structured 
around a multi-layer assessment process that examined explanation behavior, internal model 
representation alignment, output stability under perturbation, and interpretability usability under 
operational deployment. The objective was to measure how accurately an explanation reflects the true 
internal logic of the model, rather than how intuitively understandable or visually appealing the 
explanation appears. To achieve this, the methodology isolates the model’s predictive behavior, internal 
feature representations, and explanation generation pathways to identify where alignment holds and 
where it breaks down. 
The first stage involved establishing a set of baseline model behaviors. Models were trained or selected 
with varying architectural complexity, including shallow interpretable models and deep neural networks 
with non-linear representation hierarchies. Each model was tested on a set of controlled input conditions 
to produce reference outputs. These reference outputs served as the ground behavior against which all 
post-hoc explanations would be evaluated. This controlled setup ensured that explanation fidelity could 
be measured relative to the model’s stable predictive behavior rather than external correctness 
benchmarks. 
The second stage focused on explanation generation across multiple interpretation methods. For each 
model, interpretation outputs were generated using both feature attribution–based methods and 
representation-level interpretability methods. The outputs included saliency distributions, feature 
importance rankings, counterfactual region boundaries, and surrogate-model summaries. Each 
explanation was stored in a structured representation format that enabled comparison at both the 
individual sample level and aggregated dataset level. This ensured direct comparability between different 
explainability approaches. 
The third stage evaluated local fidelity, measuring how well an explanation aligned with model behavior 
when small perturbations were applied to input features. Controlled perturbation testing was conducted 
by adjusting feature values across structured increments and observing the degree to which explanation 
outputs changed proportionally to predictive impact. Misalignment between explanation shift and model 
output shift indicated low local fidelity. This approach focused on the stability and truthfulness of 
explanation granularity rather than subjective interpretive clarity. 
The fourth stage measured global fidelity, examining how explanation behaviors aggregated across the 
entire dataset. This involved assessing whether the high-importance features identified by explanations 
corresponded to the model’s dominant decision factors across all input variation. Global fidelity analysis 
was used to detect whether explanation methods systematically biased feature attribution or masked 
deeper representation dependencies. In cases where model reasoning was distributed across latent 
spaces, low global fidelity was reflected by inconsistent importance rankings or unstable attribution 
dominance patterns. 
The fifth stage introduced representation-space alignment analysis, where internal embeddings from the 
model were compared with the structural patterns reflected in the explanations. This involved measuring 
similarity between model latent clusters and explanation-derived conceptual groupings. If explanation 
outputs grouped data instances differently from the model’s internal structures, the method was 



Education & Technology 

Vol. 8, No. 2, 2026, pp. 1-5 

  

3 

determined to have limited structural fidelity. This stage was essential for evaluating models where 
reasoning pathways were not easily translatable to surface-level features. 
The sixth stage addressed causal influence validation. Using controlled counterfactual re-generation, 
specific input feature dependencies were isolated and inverted to test whether explanations accurately 
reflected the causal contribution of those features. If explanations highlighted a feature as being 
influential but output behavior did not change meaningfully when the feature was manipulated, the 
explanation was considered to exhibit non-causal attribution bias. This stage distinguished between 
correlation and mechanistic influence within explanation fidelity. 
The seventh stage assessed output stability under operational deployment conditions. Explanations were 
generated under varying computational load, distributed execution contexts, UI call patterns, and memory 
state persistence conditions to evaluate whether explanation consistency degraded when integrated into 
enterprise workflow environments. This ensured that fidelity measures reflected real deployment 
behavior rather than idealized offline interpretability conditions. 
The final stage synthesized the fidelity indicators into a composite scoring framework. Local stability, 
global attribution coherence, representation alignment, causal influence correspondence, and deployment 
robustness were normalized into comparative scoring indices. This allowed systematic benchmarking of 
explanation methods across models, data domains, and operational scenarios. The resulting evaluation 
provided both per-method fidelity diagnostics and actionable interpretation reliability profiles for 
practical decision-support use. 
 
3. Results and Discussion 
The results showed clear differences in explanation fidelity across interpretation methods and model 
architectures. Models with shallow decision boundaries, such as linear classifiers, exhibited high fidelity 
across all interpretation techniques because their reasoning pathways were directly traceable to 
interpretable representations. In contrast, deep neural models with non-linear feature composition 
demonstrated significant variation in fidelity depending on whether the explanation method targeted 
surface-level feature effects or deeper latent structure. This confirms that explanation fidelity is not 
primarily a property of the explanation method itself but a reflection of how well the method aligns with 
the model’s internal representation strategy. 
Local fidelity testing revealed that perturbation-based methods provided reliable reflection of short-range 
decision sensitivity but struggled when feature influences were distributed across multiple 
representation layers. In scenarios where model reasoning depended on hierarchical abstractions, local 
perturbation attribution tended to fragment importance weights, making explanations appear noisy or 
unstable. Representation-steering interpretation techniques, however, maintained more consistent 
fidelity by tracing semantic shifts in latent embedding space rather than surface-level input gradients. 
This suggests that local explanations must be complemented by representation-space reasoning to avoid 
oversimplification. 
Global fidelity measurements showed that some widely used attribution methods frequently overstated 
the importance of highly variable features simply because those features produced larger activation 
gradients. This led to misleading explanations that emphasized features that the model was sensitive to 
numerically, rather than conceptually. In contrast, methods that aggregated attribution across model 
layers or across multiple inference samples were more successful at identifying the core conceptual 
drivers that guided model reasoning. These results indicate that fidelity improves when explanation 
models incorporate global structural reasoning rather than relying solely on local gradient analysis. 
Causal influence validation provided the most discriminative fidelity indicator. Several explanation 
methods produced visually and narratively compelling explanations that did not align with the model’s 
actual decision logic when features were manipulated causally. Methods that drew from counterfactual 
reasoning and influence-directed feature suppression produced the highest causal alignment, 
demonstrating that mechanistic fidelity requires isolating and testing model dependencies, not only 
observing their correlations. This stage exposed cases where popular explanation methods produced 
persuasive but incorrect narrativesan especially serious risk for high-stakes decision environments. 
Finally, deployment testing showed that explanation consistency degraded when computational load 
increased or state persistence mechanisms were unstable. In cloud-based application environments, 
explanation outputs varied when model inference contexts shifted between sessions or nodes. Systems 
with strong session-state retention and representation caching maintained stable fidelity, while those 
without synchronization exhibited drifting or contradictory explanations. This emphasizes that 
explainability fidelity is as much a systems-engineering concern as a model-design concernexplanations 
must remain stable across inference conditions, not just offline evaluation. 
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4. Conclusion 
This study demonstrates that evaluating post-hoc explainability requires measuring how closely an 
explanation reflects the true internal reasoning of a model rather than how intuitively understandable the 
explanation appears. The results show that methods focusing solely on feature-level attribution or 
simplified visual mappings can produce compelling but misleading interpretive narratives. High-fidelity 
explainability must therefore incorporate structural analysis of representation layers, causal dependency 
validation, and multi-level attribution coherence to ensure that explanations reflect the actual decision 
pathways used by the model. Where reasoning is distributed, purely local explanation techniques are 
insufficient because they capture sensitivity rather than conceptual contribution. 
The findings also emphasize that causal alignment is the strongest indicator of explanation fidelity. Only 
explanations that reliably predict model behavior when input dependencies are perturbed or inverted can 
be considered truthful representations of internal logic. Methods grounded in counterfactual generation 
and influence-directed analysis consistently outperformed gradient-based or surrogate approximation 
approaches in capturing how models actually reasoned. This reinforces that fidelity is fundamentally tied 
to mechanistic transparency rather than descriptive or narrative clarity. Explanation systems must 
therefore be designed to verify reasoning structure, not just illustrate output correlations. 
Finally, deployment-level evaluation revealed that fidelity is not solely a modeling challenge but also a 
systems-integration concern. In cloud-based Oracle APEX environments and distributed inference 
settings, explanation stability depends on memory consistency, state synchronization, and inference 
pipeline determinism. Explanation fidelity must therefore be validated under realistic operational 
conditions rather than offline laboratory contexts. Future work may extend this framework toward 
adaptive explainability engines that monitor fidelity drift in real time, enabling models to sustain 
trustworthy, auditable reasoning behavior throughout their lifecycle in enterprise and regulatory-driven 
environments. 
 
References  
1. Doustjalali, S. R., Gujjar, K. R., Sharma, R., & Shafiei-Sabet, N. (2016). Correlation between body mass 

index (BMI) and waist to hip ratio (WHR) among undergraduate students. Pakistan Journal of 
Nutrition, 15(7), 618-624. 

2. Yasmin, Farzana, et al. "Response of sweet potato to application of Pgpr and N fertilizer." Annals of 
the Romanian Society for Cell Biology 25.4 (2021): 10799-10812. 

3. Jamal Hussaini, N. M., Abdullah, M. A., & Ismail, S. (2011). Recombinant Clone ABA392 protects 
laboratory animals from Pasteurella multocida Serotype B. African Journal of Microbiology 
Research, 5(18), 2596-2599. 

4. Fazlul Karim Khan, Md, et al. "Molecular characterization of plasmid-mediated non-O157 
verotoxigenic Escherichia coli isolated from infants and children with diarrhea." Baghdad Science 
Journal 17.3 (2020): 19. 

5. Hussaini, J., Nazmul, M. H. M., Masyitah, N., Abdullah, M. A., & Ismail, S. (2013). Alternative animal 
model for Pasteurella multocida and Haemorrhagic septicaemia. Biomedical Research, 24(2), 263-
266. 

6. Keshireddy, S. R. "Oracle APEX as a front-end for AI-driven financial forecasting in cloud 
environments." The SIJ Transactions on Computer Science Engineering & its Applications (CSEA) 9.1 
(2021): 19-23. 

7. MKK, F., MA, R., Rashid, S. S., & MHM, N. (2019). Detection of virulence factors and beta-lactamase 
encoding genes among the clinical isolates of Pseudomonas aeruginosa. arXiv preprint 
arXiv:1902.02014. 

8. Keshireddy, S. R. "Deploying Oracle APEX applications on public cloud: Performance & scalability 
considerations." International Journal of Communication and Computer Technologies 10.1 (2022): 
32-37. 

9. Nazmul, M. H. M., Fazlul, M. K. K., Rashid, S. S., Doustjalali, S. R., Yasmin, F., Al-Jashamy, K., ... & Sabet, 
N. S. (2017). ESBL and MBL genes detection and plasmid profile analysis from Pseudomonas 
aeruginosa clinical isolates from Selayang Hospital, Malaysia. PAKISTAN JOURNAL OF MEDICAL & 
HEALTH SCIENCES, 11(3), 815-818. 

10. Nazmul, M. H. M., M. A. Rashid, and H. Jamal. "Antifungal activity of Piper betel plants in 
Malaysia." Drug Discov 6.17 (2013): 16-17. 

11. Hussaini, J., et al. "Recombinant Clone ABA392 Protects laboratory animals from Pasteurella 
multocida serotype BJ Vet." Adv 2 (2012): 114-119. 



Education & Technology 

Vol. 8, No. 2, 2026, pp. 1-5 

  

5 

12. Navanethan, D. H. A. R. S. H. I. N. I., et al. "Stigma, discrimination, treatment effectiveness and policy: 
Public views about drug addiction in Malaysia." Pakistan Journal of Medical and Health Sciences 15.2 
(2021): 514-519. 

13. Keshireddy, S. R. "Low-code application development using Oracle APEX productivity gains and 
challenges in cloud-native settings." The SIJ Transactions on Computer Networks & Communication 
Engineering (CNCE) 7.5 (2019): 20-24. 

14. Keshireddy, Srikanth Reddy. "Cost-benefit analysis of on-premise vs cloud deployment of Oracle 
APEX applications." International Journal of Advances in Engineering and Emerging Technology 11.2 
(2020): 141-149. 

15. Nazmul, M. H. M., et al. "General knowledge and misconceptions about HIV/AIDS among the 
university students in Malaysia." Indian Journal of Public Health Research & Development 9.10 
(2018): 435-440. 

16. Iqbal, Mohsena, et al. "The study of the perception of diabetes mellitus among the people of 
Petaling Jaya in Malaysia." International Journal of Health Sciences I (2022): 1263-1273. 

17. Arzuman, H., Maziz, M. N. H., Elsersi, M. M., Islam, M. N., Kumar, S. S., Jainuri, M. D. B. M., & Khan, S. A. 
(2017). Preclinical medical students perception about their educational environment based on 
DREEM at a Private University, Malaysia. Bangladesh Journal of Medical Science, 16(4), 496-504. 

18. DOUSTJALALI, SAEID REZA, et al. "Correlation between body mass index (BMI) & waist to hip ratio 
(WHR) among primary school students." International Journal of Pharmaceutical Research 12.3 
(2020). 

19. Keshireddy, S. R. "Low-Code Development Enhancement Integrating Large Language Models for 
Intelligent Code Assistance in Oracle APEX." Indian Journal of Information Sources and Services 15.2 
(2025): 380-390. 

20. Keshireddy, Srikanth Reddy. "Automated data transformation and validation in Oracle APEX using 
adaptive AI models for secure enterprise applications." Journal of Internet Services and Information 
Security 15.2 (2025): 185-208. 

21. Keshireddy, Srikanth Reddy. "Extending Oracle APEX for Large-Scale Multi-Form Workflows with 
Decoupled PL/SQL Logic and Asynchronous Processing Layers." 2025 International Conference on 
Next Generation Computing Systems (ICNGCS). IEEE, 2025. 

22. Selvaganapathi, G., et al. "Knowledge and practice on tuberculosis among prison workers from 
Seremban Prison." Occupational Diseases and Environmental Medicine 7.4 (2019): 176-186. 

23. Khan, Md Fazlul K., et al. "Detection of ESBL and MBL in Acinetobacter spp. and Their Plasmid 
Profile Analysis." Jordan Journal of Biological Sciences 12.3 (2019). 

24. Nazmul, M. H. M., Salmah, I., Jamal, H., & Ansary, A. (2007). Detection and molecular 
characterization of verotoxin gene in non-O157 diarrheagenic Escherichia coli isolated from Miri 
hospital, Sarawak, Malaysia. Biomedical Research, 18(1), 39-43. 

25. Foysal, Md Javed, et al. "Identification and assay of putative virulence properties of Eschericha coli 
gyrase subunit A and B among hospitalized UTI patients in Bangladesh." Inov Pharm 
Pharmacother 1.1 (2013): 54-59. 

26. Keshireddy, Srikanth Reddy. "Bidirectional Flow of Structured Data between APEX and Streaming 
Pipelines Using AI-based Field Mapping and Noise Filtering." 2025 International Conference on Next 
Generation Computing Systems (ICNGCS). IEEE, 2025. 

27. Keshireddy, Srikanth Reddy. "Natural Language Processing Integration in Oracle APEX for 
Enhanced User Interaction in Ubiquitous Systems." Journal of Wireless Mobile Networks, Ubiquitous 
Computing, and Dependable Applications 16 (2025): 668-689. 

28. Hussaini, Jamal, Nurul Asyikin Othman, and Mahmood Ameen Abdulla. "Antiulcer and antibacterial 
evaluations of Illicium verum ethanolic fruits extract (IVEFE)." Medical science 2.8 (2013). 

29. Nazmul, M., M. Fazlul, and M. Rashid. "Plasmid profile analysis of non-O157 diarrheagenic 
Escherichia coli in Malaysia." Indian Journal of Science 1.2 (2012): 130-132. 

30. Vijayakumar, K., Mohammad Nazmul Hasan Maziz, and Mathiyazhagan Narayanan. "Classification of 
Benign/Malignant Digital Mammogram Images using Deep Learning Scheme." hospital 4 (2025): 5. 

31. Keshireddy, Srikanth Reddy. "Deploying TensorFlow-Based Predictive Models." International 
Journal of Advances in Engineering and Emerging Technology 12.2 (2021): 11-18. 

32. Keshireddy, Srikanth Reddy. "Multi-Hop Signal Transmission Patterns in Oracle APEX-Based 
Monitoring Systems with Dynamic IoT Feedback Loops." International Journal of Engineering, 
Science and Information Technology 5 (2025): 554-560. 

33. Keshireddy, Srikanth Reddy. "Retrieval-Augmented Generation Techniques In Oracle Apex 
Improving Contextual Responses In Ai Assistants." Archives for Technical Sciences 2.33 (2025): 253-
270. 


