ISSN: 3107-7056, DOI: https://doi.org/10.17051/NJQIBE/02.02.04

Data Lakes vs. Data Warehouses in Library Analytics: An Innovation Management Perspective

Prerna Dusi¹, F. Rahman²

¹Assistant Professor, Department of Information Technology, Kalinga University, Raipur, India Email: ku.PrernaDusi@kalingauniversity.ac.in

²Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India Email: ku.frahman@kalingauniversity.ac.in

Article Info

Article history:

Received: 15.03.2025 Revised: 19.04.2025 Accepted: 06.05.2025

Kevwords:

Data governance, library innovation, data lakes, data warehouses, quality management, information strategy, business intelligence.

ABSTRACT

Academic libraries are already changing their service focused units to strategic data centres in which innovation, informed decision-making, and operational performance are based on strong information structures. Here, the data lakes or data warehouses debate is of paramount importance to the acquisition, handling, and utilisation of data by libraries to develop superior analytics. Within this paper, a comparative study of data lakes and data warehouse was provided on the basis of an innovation management viewpoint specific to academic libraries. It evaluates the critical quality parameters such as data integrity, accessibility, governance, scalability, and adaptability of analytics to determine how each of the architectures supports the various forms of library analytics. The research points to the fact that data lakes, which have a schema-on-reads capability and are capable of accommodating heterogeneous, large-scale, and multi-format data, offer increased flexibility to exploratory analytics, machine learning, and fast prototyping of new innovative services like personalised recommendations, predictive user engagement models. On the other hand, databases with the properties of schema-on-write design and with tightly regulated ETL operations provide a higher degree of data consistency, reliability and auditability, which are more appropriate to standardised reporting, accreditation metrics and compliance-driven analytics. Having acknowledged that libraries need to ensure innovativeness and high data quality standards at the same time, the paper suggests an Innovation Governance Framework that combines the two architectures in a complementary way. In this hybrid system, the data lake serves as an experimentation, discovery system and the data warehouse as the system of record to the validated indicators and institutional dashboards. With real-time adaptation of technical architectures to the data governance, ethical matters or considerations and continuous improvement activities, the framework facilitates more intelligent decisions made by academic libraries, strategic planning and increased contribution to the excellence of organisational data as an essential factor.

1. INTRODUCTION

As of today, academic libraries are moving beyond the handling of physical collections and traditional bibliographic services and becoming more commonly viewed as strategic information centres that can promote the evidence-based decision-making, student success analytics, research impact measurement, and operational optimization. The digital resources, learning management systems (LMS), institutional repositories, discovery platforms, and other user interaction means have grown and expanded fast, creating and consuming

large amounts of structured, semi-structured and unstructured data in library settings. Such information-intensive environment puts academic libraries in the larger framework of business excellence and innovation management, in which the leaders of the library should be able to not just curate and make information available to others, but also deliver actionable information, feed institutional performance dashboards, offer personalised and data-oriented library services, and become an active participant in the strategic planning and accreditation processes. Libraries

need high performance and scalable data architecture to fulfil such changing demands. Two prevalent styles in the field of organisational analytics, namely data warehouses and data lakes, have different but complementary capabilities: data warehouses concentrate on clean, structured, and integrated data to enable the dependable reporting and business intelligence, whereas data lakes concentrate on scalable storage of raw, multi-form data that can be flexibly processed to provide advanced analytics and innovation-oriented activities.

1.1 Problem Statement

Although the concept of data warehouses and data lakes have been widely discussed in the fields of the business and the information technology side in general, there has been little conceptual analysis of how these architectures can be applied to the environment of the academic libraries, and especially, the aspect concerning the innovation management and quality excellence. Decision makers at libraries are continually caught in a difficult situation over whether they should invest heavily in centralised structured data warehouse, or invest in flexible and exploratory data lake, or a hybrid design that cheques in both directions. This is complicated by concerns regarding how each architecture will impact the data quality, the practises of governance, the ability to analyse, and the ability to support the innovative services in a sustainable and conformable way. A coherent set of conceptual structures, therefore, that enables the leaders of libraries to perceive the trade offs between agility and control, experimentation and standardisation, and innovation and compliance as well as to make decisions in choosing or creating an architectural model that is correlated with the priority of the institutions as well as the new information related data-driven library activity are therefore in need.

1.2 Objectives of the Study

The main aim of the paper is to comparatively criticise the data lakes and data warehouses on the basis of their applicability to the analytics of academic libraries with respect to how it relates to innovation and quality management implications. In particular, the paper aims at comparing these architectures on major quality dimensions i.e., data integrity, accessibility, governance and analytical adaptability with the aim of defining how each model is useful in different types of library usage spectra, between some basic reporting and some advanced, exploratory analytics. The research then seeks to design an Innovation Governance Framework based on the strengths of both data lakes and data warehouses in a hybrid design that would allow libraries to support innovation-driven projects and, at the same time, adhere to strict requirements of data reliability, constant improvements and institutional decision intelligence.

1.3 Contribution and Scope

This paper makes a contribution, but it is more a conceptual and management other than a technical or implementation-based contribution. It has a systematic comparative and contrastive review of data lakes and data warehouses that is explicitly positioned with scholarly library applications, which explain how either of these architectures fits the newest requirements of analytics, innovation, and institutional responsibility. Moreover, it proposes a governance-focused model that connects information architecture-related choices with quality management, data governance, as well as innovation management concepts and gives the library and institutional leaders a strategic lens through which the transformation ideas can be planned with the use of data Figure 1. The study is deliberately restricted in terms of scope to academic library analytics and the associated institutional decision-support functions; the attempt to encompass all enterprise analytics situations in higher education (as well as other sectors) is not made. Still, the developed conceptual model and the Innovation Governance Framework can be customised and scaled to wider institutional fields where the hybrid data structures and innovation-driven governance are needed.

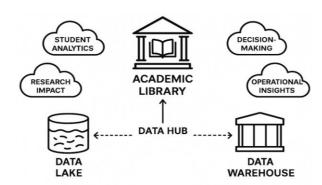


Fig. 1. Academic Library as Data Hub Integrating
Data Lake and Data Warehouse

2. LITERATURE REVIEW

2.1 Development of Library Analytics and Evidence-Based Practise

As academic libraries have emerged as more complex systems, the traditional reliance on simple activity counts (circulation and gate turnover) as well as simple usage data has given way to an evidence-based view of librarianship and information-based decision-making, in which performance is understood not just in terms of user activity but also in terms of overall learning

outcome, research impact, and institutional objective [7], [10]. The spread of integrated library systems (ILS), electronic resource management platforms, discovery services, institutional repositories, and learning management systems (LMS) has given rise to a difficult ecosystem of heterogeneous streams of data that puts the library in a producer and consumer of analytics [1], [4]. This change requires more advanced information architectures that can overcome transaction-level data, behavioural logs, and content metadata across platforms to help with the sound analytics and strategic reporting [1], [8]. Therefore, library analytics is also increasingly being addressed in terms of higher education more generally have business excellence, learning analytics and digital transformation, and is where scalable, controlled, and interoperable data infrastructures are required [7], [9].

2.2 Library and Higher Education analytics Data Warehouses

Data warehouses within higher education have served as the base of data mining of events that enable enterprise reporting, accommodation of accreditation and monitoring of quality, often incorporating data in student information systems, finance, human resources, and learning systems, subject data marts and institutional dashboards [3], [8]. These warehouse settings have been used by academic libraries to consolidate circulation and holdings data in ILS/LMS, combine COUNTER-compliant use reports of electronic resources, and create standardised indicators, which can be used in accreditation applications. institutional performance framework [1], [4]. The high data validation, harmonisation, and lineage tracking of schema-on-write paradigm and formal Extract, Transform, Load (ETL) processes that are typical of data warehouses increase reliability, repeatability, and auditability of library metrics [8] [13]. Nevertheless, the same design characteristics that enhance standardisation may restrict flexibility, and because Adding new data sources or allowing new analytical queries may necessitate schema, ETL procedure, and governance process amendments which can be resource-intensive and time-consuming to library and IT stakeholders [3], [8].

2.3 Academic Libraries Data Lakes and Big Data Paradigms

Several new directions in library innovation have been made possible by the emergence of big data paradigms and data lake architectures that allow storage and processing of raw and multi-format data, such as web logs, clickstream traces, full-text corpora, digital media, chat transcripts, sensor

outputs and social media content, without applying a strict schema upon them at the time of ingestion [3], [9], [12]. Such data lakes are actively linked to learning analytics projects, student success efforts, behavioural modelling of interaction with mobile users, and text/data mining of large academic and institutional collections to discover research and to analyse its impact in academic settings [7], [9], In the case of libraries, schema-on-read processing provides the flexibility to quickly explore more complex analytics, e.g. recommender systems, resource demand prediction models, and custom user interfaces that personalise services and content [2], [9], [12]. Simultaneously, the literature notes significant dangers of having poorly managed data lakes that can cause the creation of so-called data swamps with inefficient metadata, inconsistent definitions, scanty documentation, and increased privacy and ethical implications regarding the storage and re-use of fine-grained user data [4], [6], [13].

2.4 Management of Innovation, Quality, and the Data in Library Usages

The term data is theorised in the area of innovation management as a strategic resource which allows experimentation, feedback loops and decision intelligence, whereas the models of quality management and business excellence, like Total Quality Management (TQM) and continuous improvement models focus on standardised processes, traceable indicators, and systematic review cycles (Plan-Do-Cheque-Act) [1], [4], [13]. Academic libraries are currently at the crossroads of these two viewpoints, with a twofold need to innovative analytics alongside experimentative and AI-enhanced services (including pilots, prototypes, and learning analytics dashboards) and ensure that the data submitted to provide institutional reporting, accreditation, and accountability are of superior quality, auditable, and meet regulatory and ethical standards [4], [6], [7]. Data governance thus becomes the key element of integration that requires the establishment of well-defined roles, policies, standards, and procedures to organise the information regarding data collection, classification, documentation, security, and data sharing within data lake and data warehouse landscapes [5], [6], [13]. Although the current research on the learning analytics, big data, and library assessment is abundant, comparative studies of data lakes versus data warehouses in specific contexts, including academic libraries, and conceptual frameworks in which architecturerelated decisions are explicitly framed within an innovation management perspective and both models are combined under a regulated innovation perspective are still focused [8], [9], [12], [13]; this gap is the driving force behind the present research.

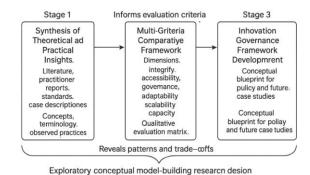
3. RESEARCH METHODOLOGY

The research employs the conceptual, qualitative approach, which incorporates the knowledge gained in information systems, library science, and innovation management. The approach has been split into three broad segments: research design, data, and dimensions of data analysis, and data analysis process.

3.1 Research Design

Theoretical and Practical Experience Synthesis

The study is an exploratory and conceptual design and opens with the systematic synthesis of existing theoretical and practical knowledge on the subject of data lakes, data warehouses and library analytics. Relevant publications in the fields of information systems, higher education and library science are examined to determine how these architectures are defined, implemented and governed within the real world setting with special focus on data quality, governance, innovation and decision support issues. Besides formal research articles. practitioner reports. standards documents, and institutional descriptions of cases are reviewed in order to describe how academic libraries and universities are already using analytic infrastructures to help in supporting learning analytics, performance dashboard, and strategic planning. It is a stage of synthesis, which offers a base of ideas, expressions, and practise that has been observed and is used to guide the further comparative analysis and absolutely to secure that the study is placed on a foundation of both existing theory and working reality.


Building of a Multi-Criteria Comparative Framework

It is based on the synthesised literature that the erects a multi-criteria comparative framework in order to systematically analyse data lakes and data warehouses within the framework of analytics of academic libraries. The important dimensions of evaluation are gained based on the common themes in the literature, which include data integrity, data accessibility, data governance, data analytical flexibility, scale, and organisational capacity. The dimensions are well-defined and operationalized to ensure that architectures are evaluated in a standard manner and based on the results. The structure is implemented qualitatively, in the form of a structured matrix of relative strengths, limitations and trade-offs of data lakes and data warehouses to library application cases. This is a step forward as far as descriptive comparison is concerned, as it orders the analysis with criteria that are directly

pertinent to quality excellence and innovation management in academic libraries.

Development of Conceptual Model and Innovation Governance Framework

During the last point of the research design, the observations made within the framework of the comparative study are brought to a superior level and presented in the form of the conceptual model, the proposed Innovation Governance Framework. Trends that are witnessed in the matrix which includes the tension between flexibility and control, experimentation and standardisation are articulated to form a integrated data lakes and data warehouses that can be used as complementary units in a single architecture Figure 2. The framework defines roles, layers and interaction among the two environments which should focus on how the two environments, the governance mechanisms, quality process and innovation working processes can be aligned to accommodate both the exploratory analytics and the trustworthy institutional reporting. It is a conceptual, not empirical, model-building exercise that ideally can inform policy, investment and future case-study research on the strategic and theoreticallyinformed blueprint of a hybrid data architecture in academic libraries.

Fig. 2. Research design for comparative analysis of data lakes and data warehouses

3.2 Data Sources and Analytical Dimensions Secondary Data Sources

The present research is purely based on secondary data with reference to the existing knowledge, instead of the primary data that could be obtained in one institution. Core sources have peerreviewed literature on the topics of data warehouses, data lakes, and big data analytics with definitions, architectural properties, and reported pros and cons of each model. They are augmented by case descriptions, institutional reports and institutional documents of higher education and library settings, where they exist, describing how analytic infrastructures are being put to practise and how they are benefiting learning analytics, performance measurement, and strategic decision-

making. Furthermore, innovation management frameworks and principles, quality management, and data governance concepts are also examined to find the notions of experimentation, continuous improvement, process standardisation, risk management, and compliance to be reflected in the analysis both technologic and managerial-wise.

Literature and Case-Based Contributions to Library Situations

Among the secondary data sources, a special focus is placed on the studies and reports that specifically consider the academic libraries or any other higher education analytics situations. These sources provide some understanding of the ways in which libraries are exploring enterprise data warehouses, testing with big data or learning analytics platforms, and reacting to institutional needs of evidence-based reporting. Case-based inputs consist of actual examples of defining metrics, adding dashboards, and the practise of governance being implemented, and the issues faced in integrating data across systems, including ILS, LMS, repository, and e-resource manager. Combining all these inputs allows the study to identify common patterns and needs that apply to library analytics and not just the peculiarities of a particular local implementation.

Evaluation Dimensions Construction

A rough set of evaluation dimensions is developed, based on the literature review, case reports, and management frameworks to draw comparisons between the data lakes and data warehouses in the academic library settings. Accuracy, completeness, consistency and reliability of data are essential for reliable reporting and decision-making which are all covered under data integrity and quality. Accessibility and usability are used to describe how easy it is for various categories of users to learn of, query and analyse data, such as non-technical personnel, managers and analysts.

Governance and compliance involves compliance with data governance policy, privacy requirements and regulatory or accreditation requirements. Analytical flexibility and innovation capability is an indicator of the capabilities of any given architecture to accommodate future-oriented analytics, experimentation and new applications. The cost and scalability domains are concerned with storage and compute scalability, overall cost of ownership, and ability to support the increasing amount of data. Last and finally, skill and capacity requirements deal with the technical knowaway and organizational abilities required to effect, support, and misuse all the architectures.

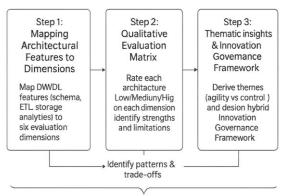
Applicability of Dimensions to Innovation-Based Decision-Making

Collectively, these evaluation dimensions aim at both technical and managerial dimensions that must be taken into consideration formatively in making informed decision regarding innovation based decisions in academic libraries. They make sure that the differentiation between data lakes and data warehouses is determined not only using the performance or storage features, but it also incorporates the way each architecture influences daily activities, operations of staff, and their compliance requirements as well as the ability to test out new services and analytical procedures Table 1. The framework allows taking into account the ability of each architectural option to provide a balanced approach to innovation by incorporating quality and accountability by explicitly linking the technical features to such issues as usability, governance, and organisational capacity. This, in its turn, offers a systematic foundation to further create the next Innovation Governance Framework and orient leaders of libraries in the selection or development of the architectures that resonate with the level of the institutional readiness and priorities.

Table 1. Evaluation dimensions for comparing data lakes and data warehouses in academic libraries

Dimension	Brief definition / focus	Innovation-oriented
		relevance
Data integrity and	Accuracy, completeness, consistency,	Ensures trustworthy indicators
quality	reliability of data	for decisions and reporting
Accessibility and	Ease of discovery, querying, and	Enables non-technical staff and
usability	interpretation by different users	managers to use analytics
Governance and	Alignment with policies, privacy, and	Reduces risk while enabling
compliance	regulatory/accreditation needs	responsible data use
Analytical adaptability	Support for advanced analytics,	Determines ability to prototype
and innovation	experimentation, new use cases	and scale innovative services
Cost and scalability	Storage/compute scalability, total cost of	Affects long-term sustainability
	ownership	of analytics infrastructure
Skill and capacity	Technical expertise and organizational	Indicates readiness and
requirements	capabilities required	investment needed for each
		architecture

3.3 Analytical Procedure Assigning Architectural Characteristics to Evaluations Dimensions


The essential architectural characteristics of data warehouses and data lakes were systematically mapped on the six evaluation dimensions determined at the beginning of the study during the first step of the analytical procedure. In the case of data warehouses, schema on write design, data integration using ETL, structured relational design, and performance on queries were compared with regards to data integrity and quality, data accessibility and usability, governance and compliance, analytical adaptability, cost and scalability, and skill and capacity requirements. In the case of data lakes, such characteristics as schema-on-read processing, raw data storage in multiple formats, large and heterogeneous data processing, and potentially high-level analytics were studied through the same dimensional prism. The mapping resulted in the study being able to perceive the exact strengths and weaknesses of each of the architectures according to an academic library viewpoint, so that the comparison would not be based on abstract or technology-focused descriptions.

Building of a Qualitative Evaluation Matrix

Synthesis of the mapped relationships between the features and the dimensions into qualitative evaluation matrix was carried out in the second step. In this matrix, data warehouses and data lakes have had their ratings on a relative low-medium-high basis with each of the dimensions, but the ratings have been understood using the specific needs limitations of academic libraries, as opposed to a generic enterprise situation. An example is the fact that the data warehouses scored highly in terms of data integrity and governance as a result of their excellent validations, harmonisation and lineage abilities, but scored medium in analytical flexibility owing to their less flexible nature in handling new and unstructured data sources or those that are rapidly changing. Data lakes were also considered to be innovative and highly adaptable in terms of analytics, allowing exploration analytics and machine learning, but inconsistent in terms of Governance and quality depending on the maturity of metadata practises, access controls, and oversight. This matrix presented the structured and easy to understand representation of the trade-offs between the two architectures, as a way of linking the detailed technical attributes and the strategic decision criteria to the architectural.

Thematic Insights and Framework Components Thematic insights and Framework components are derived in the following manner

The third step involved scrutinising the qualitative evaluation matrix to come up with the higher level thematic understanding and the essence elements Innovation the proposed Governance Framework. Comparing the ratings and narrative evaluations on dimensions, recurrent wild patterns and tensions were found, such as the contrast between high innovation possibility and lower default management in data lakes, and-high compliance and-low agility in data warehouses Figure 3. Such patterns were viewed to mean that the two architectures could be used together in a hybrid library analytics environment to perform complementary roles. Based on this. conceptualization of the study included developing an architecture that would allow the data lake to be an agile design that allows experimentation and higher-order analytics, whereas the warehouse would be a dependable system of record of validated and high-quality indicators and institutional reporting. The derived framework defines the relationship, the boundary and governance dynamics required to strike a balance in agility and reliability, and it is the conceptual framework on which the results and discussion in the next section is based.

Three-step, qualitative analytical procedure leading to the innovation Governance Framework

Fig. 3. Analytical procedure for comparing data lakes and data warehouses

4. RESULTS AND DISCUSSION

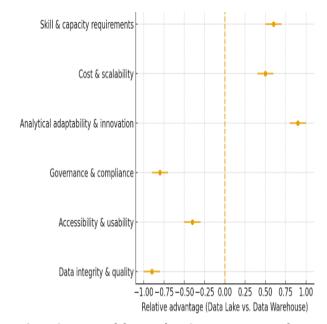
4.1 Comparative Assessment based on Major Dimensions

The qualitative analysis indicates that the data warehouses and data lakes have different but complementary competencies at the most relevant dimensions. Data warehouses are also good systems of record since the authorities of data integrity, data governance, and usability control are on a schema-on-write and ETL-driven approach, which is highly effective in endorsing the official KPIs and institutional reports. Data lakes, however, store raw, multi-format data effectively and with lower cost of storage, which is

optimal to advanced analytics, but is susceptible to high upstream costs, including downstream cleaning, metadata and expertise. Although curated BI views provide greater access to nontechnical employees in warehouses, lakes are initially popular with data engineers and data scientists. Generally, the discussion ascertains that the two architecture is not the full substitute of either other, but rather works best with each other as part of a comprehensive library analytics system.

4.2 Innovation Management Trade-Offs

In the aspect of innovation management perspective, the comparison shows three primary trade-offs, which are agility versus control, exploration versus standardisation, and innovation capacity versus organisational readiness. Data lakes facilitate quick experimentation in that libraries can quickly experiment with new models and services without having to redesign their schema, during which data warehouses require basic control and consistency in type of measurements applied in the strategic and external reports. Lakes are especially effective when verbalising exploratory analytics with changing queries and heterogeneous data, whereas warehouses formalise victorious measures and models verified successful. Though, to make the most of a data lake, one should have advanced analytical capabilities, a sophisticated governance model, and an experimental culture, so informally many libraries can start with warehouses and expand to hybrid, innovation-based designs.


4.3 Quality Management of Libraries Implications

The results indicate a distinct separation of roles in the perspective of a quality management. The data warehouse ought to be the source of quality assured indicators used in accreditation and rankings as well as institutional performance reviews, which is reliable, traceable, and adheres to compliance. The data lake, in its turn, serves as an innovation laboratory where the new indicators, predictive features, and analytics-based insights are created and tested prior to being selectively migrated into the warehouse after validated. This layout promotes the organised Plan-Do-Cheque-Act cycle, where planning and testing in the lake, serious checking of outcomes and effects, and final steps of the Act are

performed where good practises become standardised in the warehouse and the related processes of governance, which entails the implementation of continuous improvement in the library analytics.

4.4 Institutional Decision Intelligence Positioning

In combination, the findings indicate that data lake-data warehouse architecture enhances the role of the library in the decision intelligence within the institution. Whereas data warehouses offer reliable, similar measures as demanded by top management, quality assurance departments, and outside investors, data lakes can offer the ability to explore with which new trends in user behaviour, resource utilisation, and service performance cannot be revealed using structured systems alone Figure 4. Combining these functions will enable the libraries to take a step further to be proactive and prescriptive in their stance rather than retrospective in their reporting (Table 2), predicting the future and prescribing specific interventions. The reduction of the what has happened into what will most probably happen and what is supposed to be done is the basic approach toward making the library innovation-based, data-driven institutional strategy partner.

Fig. 4.Conceptual forest plot: Comparative results across key dimensions

Table 2	Qualitative eva	lustion matrix	for data lakes	vs. data warehouses
Table 4.	. Ouantative eva	tuation matrix	TOT UATA TAKES	vs. data warenouses

Evaluation	Data warehouse	Data lake	Relative advantage
dimension	rating	rating	(interpretation)
Data integrity &	High	Medium /	Strong advantage for
quality		Variable	data warehouse
Accessibility &	High	Medium	Moderate advantage for
usability			data warehouse
Governance &	High	Low /	Strong advantage for
compliance		Variable	data warehouse
Analytical adaptability	Medium	High	Strong advantage for
& innovation			data lake
Cost & scalability	Medium	High	Moderate advantage for
			data lake (especially at
			large scale)
Skill & capacity	Medium	High	Data lake requires
requirements*			greater
			analytical/engineering
			expertise

5. CONCLUSION

This paper analysed both data lakes and data warehouses as complimentary designs to support innovation-oriented analytics in academic libraries, which are now being increasingly deployed as strategic points of data as a catalyst in helping students succeed, assess the impact of research, and operate efficiently. The comparison has revealed that data warehouses provide a clear advantage in terms of data integrity, governance and compliance, and hence they serve as the source of institutional KPIs, accreditation reports and standardised dashboards with the design of schema-on-write and subset-on-write quality control ensured by ETL. In contrast, data lakes are more adaptive to analytics and more innovative: The flexibility of their schema-on-read data combined with their ability to support multiformat data allows flexibilities in their analytics as well: machine learning, text mining, behavioural modelling can be done and open the field to experimentation, prototyping, discovery-driven services. Nevertheless, such advantages are accompanied by the heightened pressure on governance, metadata organisational, professional competence in order to avoid the socalled data swamps. In the light of innovation management, the results reveal some crucial tradeoffs, including agility, versus control, exploration versus standardisation, and the innovation capacity versus organisational readiness, stating that the utilisation of a single architecture is not enough to support both innovation and quality requirements. To counter this, the paper has offered an Innovation Governance Framework incorporating the data lakes and the data warehouses as part of a layered framework of data infrastructure, data governance and policy, data analytics and innovation processes, data value and impact measures. This synthesis methodology

justifies a gradual implementation plan and facilitates decision intelligence by taking libraries beyond descriptive reports to more predictive and prescriptive reports and also introduces a structure on which further empirical research and better coverage of ethical, legal, and sociotechnical concerns of data-intensive library practise can be established.

REFERENCES

- Chen, H. L., Doty, P., Mollman, C., Niu, X., Yu, J. C., & Zhang, T. (2015). Library assessment and data analytics in the big data era: Practice and policies. Proceedings of the Association for Information Science and Technology, 52(1), 1–5.
- Deepika, J., Senthil, T., Rajan, C., & Surendar, A. (2018). Machine learning algorithms: A background artifact. International Journal of Engineering & Technology, 7(1), 143–149.
- 3. EDUCAUSE. (2023). Data warehouse. EDUCAUSE Library.
- 4. Garoufallou, A., &Gaitanou, P. (2021). Big data: Opportunities and challenges in libraries—A systematic literature review. College & Research Libraries, 82(3).
- 5. Janaki, S. D., &Geetha, K. (2017). Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm. Polish Journal of Medical Physics and Engineering, 23(2), 29.
- Jones, K. M. L., &Hinchliffe, L. J. (2019). New methods, new needs: Preparing academic library practitioners to address ethical issues associated with learning analytics. In Proceedings of the Association for Information Science and Technology.
- 7. Jones, K. M. L., Briney, K. A., Goben, A., Salo, D., Asher, A. D., & Perry, M. R. (2020). A comprehensive primer to library learning

- analytics practices, initiatives, and privacy issues. College & Research Libraries, 81(3), 570–611.
- 8. Kurowski, A., &Makani, E. (2017). Data warehouse with big data technology for higher education. Procedia Computer Science, 124, 93–99.
- 9. Lee, M., Kwan, W. L., & Ng, L. W. (2024). Data lake and learning analytics: Building infrastructure for enhanced teaching and learning. Cyber-Physical Learning Alliance Journal.
- 10. Luo, L. (2018). Experiencing evidence-based library and information practice (EBLIP): Academic librarians' perspective. College & Research Libraries, 79(4).
- 11. Mohan, R., Rajan, C., &Shanthi, D. N. (2012). A stable mobility model evaluation strategy for MANET routing protocols. International Journal of Advanced Research in Computer Science and Software Engineering, 2(12).

- 12. Nair, S., &Pillai, S. K. (2020). Data lake model to modern educational organizations. International Research Journal of Engineering and Technology (IRJET), 7(7).
- 13. Neuroth, H., Wuttke, S., &Kloska, J. (2025). Research data governance: The need for a system of cross-organisational data governance. Data Science Journal, 24.
- 14. Rajan, C., Geetha, K., Priya, C. R., &Geetha, S. (2015). Investigation on novel based naturally-inspired swarm intelligence algorithms for optimization problems in mobile ad hoc networks. World Academy of Science. Engineering and Technology Mathematical, International Journal of Computational, Natural and Physical Engineering, 9(3).
- 15. Sarumathiy, C. K., Geetha, K., &Rajan, C. (2020). Improvement in Hadoop performance using integrated feature extraction and machine learning algorithms. Soft Computing, 24(1), 627–636.