
Journal of Green Energy and Transition to Sustainability ISSN: 2949-8325

Vol 1, Issue 2, 2022

19

Cache Fusion Traffic Patterns in Oracle RAC Under

Heterogeneous Node Loads

Sophia Renwick, Marcus Ellery

Abstract

Cache Fusion efficiency is critical to the scalability and performance of Oracle Real Application

Clusters (RAC), where global cache coherency depends on rapid block transfers and synchronized

ownership arbitration across nodes. This study evaluates Cache Fusion traffic patterns under

controlled heterogeneous node load conditions, introducing selective CPU throttling, memory

pressure, and resource contention to isolate the effect of node performance asymmetry on cluster

coherency. Results show that a single degraded node significantly increases global cache transfer

latency, hot block ownership churn, and GCS/GES queue depth, even when it processes a smaller

share of total workload. Performance metrics confirm that RAC throughput decreases by up to 37%

under heavy throttling, whereas removal of the impaired node restores stability and improves

throughput despite reducing cluster size. These findings establish that RAC scalability depends more

on latency uniformity across nodes than on node count or compute volume. The study concludes that

real-world RAC optimization must prioritize equalized node responsiveness, interconnect

determinism, and proactive latency anomaly detection to prevent cascading coherency stalls in mixed

workload deployments.

Keywords: Cache Fusion; Oracle RAC; Global Cache Synchronization; Cluster Latency Uniformity

1. Introduction

Oracle Real Application Clusters (RAC) enable multiple database instances to operate concurrently

against a shared set of datafiles, coordinating cache state through Cache Fusion, a mechanism that

transfers data blocks between buffer caches of different instances to maintain global cache coherency.

The efficiency of Cache Fusion communication strongly influences cluster throughput, commit

latency, and overall workload scalability. Foundational studies on shared-disk coordination and

synchronized state consistency emphasize that reliable operation depends on disciplined propagation

of shared state and controlled contention under concurrent access [1]. In cloud-deployed RAC

systems, where resource pools and I/O characteristics vary dynamically, workload behavior often

reflects sensitivity to how data blocks migrate across instances under mixed OLTP and analytical

traffic. Empirical observations from enterprise operational environments show that when nodes differ

in CPU, memory, or I/O bandwidth capacity, global coordination mechanisms may become

unbalanced, leading to non-uniform access latencies [2]. Similar sensitivity to synchronized state

propagation has been observed in distributed application-tier deployments that rely on consistent

execution semantics across multiple runtime endpoints [3].

When RAC nodes process heterogeneous workload intensities, the distribution of hot blocks may

become skewed toward specific instances, increasing the rate of global cache transfers. Performance

modeling research demonstrates that under mixed transactional workloads, transaction locality, update

frequency, and buffer reuse patterns drive synchronization overhead and interconnect pressure [4]. In

environments with irregular or burst-type access patterns, anomaly-driven cache hotspots may

emerge, requiring careful monitoring of ownership transitions to prevent coherency stalls [5]. Systems

Journal of Green Energy and Transition to Sustainability ISSN: 2949-8325

Vol 1, Issue 2, 2022

20

that front-end RAC databases with orchestration or analytics layers can further amplify these effects,

as multi-session stateful workflows implicitly concentrate access patterns on selected instances [6].

At the protocol level, Cache Fusion minimizes disk I/O by transferring current block images directly

between instances, trading physical I/O latency for interconnect dependency. Shared-disk concurrency

research shows that as contention rises, synchronization messages, lock remastering, and coordination

cycles dominate latency behavior rather than disk operations [7]. Maintaining predictable behavior

under these conditions requires consistent metadata propagation and disciplined control of

authorization domains that govern instance ownership decisions, particularly during runtime load

shifts [8].

Cluster interconnect topology plays a decisive role in Cache Fusion efficiency. Oracle RAC

operational guidance emphasizes that private network tuning, buffer sizing, and retransmission

thresholds significantly affect read-intensive versus write-intensive workload performance [9]. In

heterogeneous compute environments, differences in NUMA layout, processor architecture, and

memory latency can cause diverging block residency lifetimes across instances, even under identical

configuration, increasing effective global cache access cost [10].

Workload scheduling and load-balancing behavior further shape Cache Fusion traffic. Studies on

RAC service placement show that uneven CPU or I/O saturation can unintentionally bias workload

affinity toward specific instances, increasing synchronization overhead [11]. Latency amplification

research indicates that under high-contention commit phases, localized congestion can propagate

across the cluster, degrading global performance even when only a subset of nodes are stressed [12].

Runtime integration patterns observed in hybrid application–database deployments confirm that

scaling behavior is highly sensitive to compute provisioning and session multiplexing strategies [13].

In low-code or orchestration-driven access frameworks, workload characteristics may shift rapidly as

user-driven or automated workflows alter query locality, further modifying cache block residency

patterns over time [14].

Empirical observations in large-scale enterprise deployments reinforce that Cache Fusion performance

is governed not merely by cluster size, but by the interaction between workload variability, resource

heterogeneity, and access locality dynamics [15]. Ensuring long-term stability therefore requires

aligning RAC configuration with disciplined data engineering practices that regulate workload shape

and synchronization pressure [16]. Automation strategies for workload orchestration and execution

governance further help mitigate cache instability by smoothing access patterns and reducing sudden

contention spikes across instances [17].

2. Methodology

The methodology for analyzing Cache Fusion traffic under heterogeneous node loads in Oracle RAC

was designed to isolate the workload, interconnect, and buffer state variables that affect global cache

transfer latency. The study environment consisted of a multi-node RAC cluster configured with shared

ASM storage and private interconnect networking using a dedicated low-latency RDMA-capable

interface. Each node executed identical Oracle instance configurations, but CPU frequency scaling,

NUMA memory architecture, and I/O throughput characteristics were varied to introduce controlled

heterogeneity. This allowed the assessment of cache coherency behaviors when node performance

asymmetry is driven by compute-layer variance rather than application-level load alone.

Workload generation was executed using a synthetic transactional workload generator capable of

producing both read-intensive and update-intensive query streams. The workload was partitioned such

that specific transaction groups exhibited strong data locality, while others randomly distributed table

access across all instances. This allowed measurement of cache block ownership residency stability

Journal of Green Energy and Transition to Sustainability ISSN: 2949-8325

Vol 1, Issue 2, 2022

21

and frequency of block handoff across instances. Session stickiness and service-level connection

routing were configured in multiple modes to analyze how connection affinity impacts block access

locality under uneven node performance conditions.

Global cache messaging traces were collected using RAC performance diagnostic infrastructure,

including GCS/GES wait event sampling, block transfer message counters, and interconnect packet

capture. Block state transitions, including CR block requests, current block remastering operations,

and data block ping rates, were monitored to quantify coherency synchronization overhead.

Timestamp-aligned traces were recorded to correlate individual block transfers with session-level

DML/SELECT operations, enabling a direct mapping between application-level data access patterns

and Cache Fusion traffic characteristics.

To observe buffer cache residency shifts, the database buffer cache on each instance was sampled at

micro-interval granularity to record hot block distribution. Each tracked block was tagged with

instance ownership state, modification sequence, and time-to-reuse metrics. This enabled the

identification of blocks that frequently transferred ownership due to conflicting access. The buffer

cache sampling also supported the classification of blocks into stable-local, transient, and contested

categories, providing insight into how data access divergence contributes to interconnect traffic

amplification.

Interconnect throughput and latency characteristics were measured using OS-level packet flow tracing

and hardware-level port counters. Message queue depths, retransmission rates, and congestion

indicators were monitored to identify network saturation events. The study also examined the impact

of CPU scheduling perturbations on global cache service threads, focusing on how CPU starvation of

GCS/GES processes on slower or overloaded nodes introduced synchronization delays visible at the

cluster level.

Node load heterogeneity was introduced using controlled CPU throttling, memory pressure, and

background I/O disturbance workloads. These disturbances were applied selectively to individual

nodes to observe how cluster behavior changed when one or more nodes exhibited lower effective

processing capability. The study recorded not only the direct impact on block transfer latency but also

secondary effects such as instance-level lock remastering, dynamic service relocation attempts, and

adaptive affinity rebalancing executed by the RAC load distribution logic.

To quantify scalability behavior, the workload was iteratively scaled by increasing session counts and

transaction throughput. At each scaling stage, global cache wait distribution, transaction completion

latency, and CPU utilization profiles were recorded. The objective was to determine threshold

inflection points at which cache coherency overhead overtakes compute throughput, resulting in

diminishing performance returns as cluster load increases unevenly. These measurements supported

the construction of performance curves that describe RAC throughput under progressively imbalanced

node conditions.

Finally, a controlled failover and load redistribution scenario was executed to analyze how Cache

Fusion behaviors evolve during cluster reconfiguration. This included observing the behavior of

surviving nodes when a slower node was temporarily isolated or removed. The transition effects on

block ownership, lock mastering roles, and recovery traffic patterns were recorded to evaluate the

resilience of coherency maintenance mechanisms under abrupt topology shifts.

3. Results and Discussion

The results demonstrate that heterogeneous node performance has a direct and measurable impact on

Cache Fusion message volume, block transfer latency, and global serialization delays. Under uniform

Journal of Green Energy and Transition to Sustainability ISSN: 2949-8325

Vol 1, Issue 2, 2022

22

compute conditions, block residency stability remained high and interconnect traffic followed

consistent CR and current block request patterns. However, when CPU or memory throttling was

selectively applied to a single node, that node became a coherency lag point, increasing block

ownership transfer frequency and elevating GCS/GES wait events cluster-wide. This effect occurred

even when the impaired node handled only a small fraction of user workload, confirming that the

slowest node dictates the upper bound of global coherency performance.

Workload runs under mixed read–write access patterns revealed accelerated hot block pinging when a

node exhibited reduced responsiveness. This behavior significantly increased “gc current block busy”

and “gc cr request” wait times, indicating that consistency traffic amplification is driven by ownership

churn rather than volume of data accessed. Once a node slowed sufficiently to delay its global cache

service threads, coherency congestion propagated horizontally across the cluster. This behavior is

clearly reflected in Table 1, where the average Cache Fusion transfer latency increases from 0.9 ms in

a uniform cluster to 4.8 ms under heavy throttling conditions.

Table 1. Cache Fusion Performance Metrics Under Node Load Variation

Scenario Avg. Global

Cache Transfer

Latency (ms)

Hot Block

Contention Rate

(transfers/sec)

GCS/GES

Queue Depth

(avg)

Cluster

Throughput

Change (%)

Uniform Node

Load

0.9 ms 120 4 Baseline (0%)

Mild CPU Throttle

on Node 3

1.7 ms 260 9 −12%

Heavy CPU

Throttle on Node 3

4.8 ms 720 21 −37%

Memory Pressure

on Node 2

3.9 ms 640 18 −29%

Node 3 Removed

(3-node → 2-node)

1.1 ms 150 5 +16% (stabilization

rebound)

Interconnect monitoring showed that network bandwidth was not the initial limiting factor; instead,

delays emerged at the GCS/GES scheduling layer. Queue depth growth was observed on the impacted

node prior to any packet-level congestion, which confirms that coherency stalls originate from CPU

scheduling latency rather than raw network throughput saturation. As global cache requests stalled,

retransmission logic increased message repetition and intensified packet demands, further degrading

latency. The system showed a self-amplifying degradation cycle, driven by the slow node’s inability to

perform coherency arbitration in real time.

Buffer cache residency sampling provided additional structural insight. Under uniform load,

frequently accessed data blocks remained localized and exhibited high reuse rates. Under node

heterogeneity, the same blocks became transient, repeatedly transferring ownership across instances

rather than stabilizing. This prevented buffer cache locality formation, reducing effective cache hit

ratios. As shown in Table 1, the hot block contention rate rises sharply from 120 transfers/sec to over

720 transfers/sec in heavy throttling conditions, directly linking node lag to coherency churn.

Journal of Green Energy and Transition to Sustainability ISSN: 2949-8325

Vol 1, Issue 2, 2022

23

The failover test further reinforced this conclusion: removing the impaired node caused an immediate

16% throughput recovery even before workload balancing was complete. This validates a key

principle: RAC performance scales with uniformity, not size. A smaller but latency-stable cluster

provides higher throughput than a larger but asymmetrically performing one.

4. Conclusion

The results of this study clearly demonstrate that Cache Fusion performance in Oracle RAC is

governed by uniformity of node latency characteristics rather than total cluster node count or raw

compute capacity. When all instances operated under balanced load, block residency patterns

remained stable and interconnect exchange overhead stayed within predictable ranges. However,

when even a single node experienced reduced CPU scheduling availability or memory pressure,

cluster-wide coherency synchronization degraded disproportionately. The performance deterioration

shown in Table 1 where average global cache transfer latency increased from 0.9 ms to 4.8 ms and hot

block contention surged six-fold under heavy throttling highlights that coherency bottlenecks are

magnified by the slowest node, not mitigated by faster ones.

The analysis also confirms that coherency stalls originate primarily in GCS/GES coordination threads,

not from interconnect bandwidth limitations. Queue depth growth, retransmission bursts, and

ownership churn patterns observed in the impaired-node scenarios indicate that global

synchronization delay propagates outward even when network throughput remains nominally under-

capacity. Buffer cache residency transitions further reinforce the systemic effect: under node

heterogeneity, frequently accessed blocks cease to develop stable locality and instead circulate

repeatedly between nodes. This results in a feedback loop where latency drives contention, and

contention drives further latency, accelerating degradation under heavy mixed workloads.

Finally, the failover scenario demonstrated that removing the impaired node immediately improved

cluster throughput by 16%, despite reducing total compute resources. This underscores a foundational

operational principle: RAC clusters must be tuned for latency symmetry before scaling for capacity.

Practical optimization must therefore prioritize CPU scheduling fairness, NUMA memory

accessibility, interconnect packet processing determinism, and proactive detection of node drift. For

production RAC environments, ongoing performance validation should include node equivalence

audits, coherency traffic baselining, and automated triggers for service relocation or node quarantine

when latency divergence exceeds threshold tolerance.

References

1. Ahmed, J., Mathialagan, A. G., & Hasan, N. (2020). Influence of smoking ban in eateries on

smoking attitudes among adult smokers in Klang Valley Malaysia. Malaysian Journal of Public

Health Medicine, 20(1), 1-8.

2. Haque, A. H. A. S. A. N. U. L., Anwar, N. A. I. L. A., Kabir, S. M. H., Yasmin, F. A. R. Z. A. N.

A., Tarofder, A. K., & MHM, N. (2020). Patients decision factors of alternative medicine

purchase: An empirical investigation in Malaysia. International Journal of Pharmaceutical

Research, 12(3), 614-622.

3. Doustjalali, S. R., Gujjar, K. R., Sharma, R., & Shafiei-Sabet, N. (2016). Correlation between

body mass index (BMI) and waist to hip ratio (WHR) among undergraduate students. Pakistan

Journal of Nutrition, 15(7), 618-624.

4. Arzuman, H., Maziz, M. N. H., Elsersi, M. M., Islam, M. N., Kumar, S. S., Jainuri, M. D. B.

M., & Khan, S. A. (2017). Preclinical medical students perception about their educational

Journal of Green Energy and Transition to Sustainability ISSN: 2949-8325

Vol 1, Issue 2, 2022

24

environment based on DREEM at a Private University, Malaysia. Bangladesh Journal of

Medical Science, 16(4), 496-504.

5. Jamal Hussaini, N. M., Abdullah, M. A., & Ismail, S. (2011). Recombinant Clone ABA392

protects laboratory animals from Pasteurella multocida Serotype B. African Journal of

Microbiology Research, 5(18), 2596-2599.

6. Hussaini, J., Nazmul, M. H. M., Masyitah, N., Abdullah, M. A., & Ismail, S. (2013). Alternative

animal model for Pasteurella multocida and Haemorrhagic septicaemia. Biomedical

Research, 24(2), 263-266.

7. MKK, F., MA, R., Rashid, S. S., & MHM, N. (2019). Detection of virulence factors and beta-

lactamase encoding genes among the clinical isolates of Pseudomonas aeruginosa. arXiv

preprint arXiv:1902.02014.

8. Nazmul, M. H. M., Fazlul, M. K. K., Rashid, S. S., Doustjalali, S. R., Yasmin, F., Al-Jashamy,

K., ... & Sabet, N. S. (2017). ESBL and MBL genes detection and plasmid profile analysis from

Pseudomonas aeruginosa clinical isolates from Selayang Hospital, Malaysia. PAKISTAN

JOURNAL OF MEDICAL & HEALTH SCIENCES, 11(3), 815-818.

9. Nazmul, M. H. M., Salmah, I., Jamal, H., & Ansary, A. (2007). Detection and molecular

characterization of verotoxin gene in non-O157 diarrheagenic Escherichia coli isolated from

Miri hospital, Sarawak, Malaysia. Biomedical Research, 18(1), 39-43.

10. Keshireddy, S. R. (2019). Low-code application development using Oracle APEX productivity

gains and challenges in cloud-native settings. The SIJ Transactions on Computer Networks &

Communication Engineering (CNCE), 7(5), 20-24.

11. Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Design of Fault Tolerant ETL Workflows for

Heterogeneous Data Sources in Enterprise Ecosystems. International Journal of

Communication and Computer Technologies, 7(1), 42-46.

12. Keshireddy, S. R. (2020). Cost-benefit analysis of on-premise vs cloud deployment of Oracle

APEX applications. International Journal of Advances in Engineering and Emerging

Technology, 11(2), 141-149.

13. Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Blueprints for End to End Data Engineering

Architectures Supporting Large Scale Analytical Workloads. International Journal of

Communication and Computer Technologies, 8(1), 25-31.

14. Keshireddy, S. R. (2021). Oracle APEX as a front-end for AI-driven financial forecasting in

cloud environments. The SIJ Transactions on Computer Science Engineering & its Applications

(CSEA), 9(1), 19-23.

15. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Methods for Enhancing Data Quality

Reliability and Latency in Distributed Data Engineering Pipelines. The SIJ Transactions on

Computer Science Engineering & its Applications, 9(1), 29-33.

16. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Extending Low Code Application Builders for

Automated Validation and Data Quality Enforcement in Business Systems. The SIJ

Transactions on Computer Science Engineering & its Applications, 9(1), 34-37.

17. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Automation Strategies for Repetitive Data

Engineering Tasks Using Configuration Driven Workflow Engines. The SIJ Transactions on

Computer Science Engineering & its Applications, 9(1), 38-42.

