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Abstract 

Cache Fusion efficiency is critical to the scalability and performance of Oracle Real Application 

Clusters (RAC), where global cache coherency depends on rapid block transfers and synchronized 

ownership arbitration across nodes. This study evaluates Cache Fusion traffic patterns under 

controlled heterogeneous node load conditions, introducing selective CPU throttling, memory 

pressure, and resource contention to isolate the effect of node performance asymmetry on cluster 

coherency. Results show that a single degraded node significantly increases global cache transfer 

latency, hot block ownership churn, and GCS/GES queue depth, even when it processes a smaller 

share of total workload. Performance metrics confirm that RAC throughput decreases by up to 37% 

under heavy throttling, whereas removal of the impaired node restores stability and improves 

throughput despite reducing cluster size. These findings establish that RAC scalability depends more 

on latency uniformity across nodes than on node count or compute volume. The study concludes that 

real-world RAC optimization must prioritize equalized node responsiveness, interconnect 

determinism, and proactive latency anomaly detection to prevent cascading coherency stalls in mixed 

workload deployments. 
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1. Introduction 

Oracle Real Application Clusters (RAC) enable multiple database instances to operate concurrently 

against a shared set of datafiles, coordinating cache state through Cache Fusion, a mechanism that 

transfers data blocks between buffer caches of different instances to maintain global cache coherency. 

The efficiency of Cache Fusion communication strongly influences cluster throughput, commit 

latency, and overall workload scalability. Foundational studies on shared-disk coordination and 

synchronized state consistency emphasize that reliable operation depends on disciplined propagation 

of shared state and controlled contention under concurrent access [1]. In cloud-deployed RAC 

systems, where resource pools and I/O characteristics vary dynamically, workload behavior often 

reflects sensitivity to how data blocks migrate across instances under mixed OLTP and analytical 

traffic. Empirical observations from enterprise operational environments show that when nodes differ 

in CPU, memory, or I/O bandwidth capacity, global coordination mechanisms may become 

unbalanced, leading to non-uniform access latencies [2]. Similar sensitivity to synchronized state 

propagation has been observed in distributed application-tier deployments that rely on consistent 

execution semantics across multiple runtime endpoints [3]. 

When RAC nodes process heterogeneous workload intensities, the distribution of hot blocks may 

become skewed toward specific instances, increasing the rate of global cache transfers. Performance 

modeling research demonstrates that under mixed transactional workloads, transaction locality, update 

frequency, and buffer reuse patterns drive synchronization overhead and interconnect pressure [4]. In 

environments with irregular or burst-type access patterns, anomaly-driven cache hotspots may 

emerge, requiring careful monitoring of ownership transitions to prevent coherency stalls [5]. Systems 
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that front-end RAC databases with orchestration or analytics layers can further amplify these effects, 

as multi-session stateful workflows implicitly concentrate access patterns on selected instances [6]. 

At the protocol level, Cache Fusion minimizes disk I/O by transferring current block images directly 

between instances, trading physical I/O latency for interconnect dependency. Shared-disk concurrency 

research shows that as contention rises, synchronization messages, lock remastering, and coordination 

cycles dominate latency behavior rather than disk operations [7]. Maintaining predictable behavior 

under these conditions requires consistent metadata propagation and disciplined control of 

authorization domains that govern instance ownership decisions, particularly during runtime load 

shifts [8]. 

Cluster interconnect topology plays a decisive role in Cache Fusion efficiency. Oracle RAC 

operational guidance emphasizes that private network tuning, buffer sizing, and retransmission 

thresholds significantly affect read-intensive versus write-intensive workload performance [9]. In 

heterogeneous compute environments, differences in NUMA layout, processor architecture, and 

memory latency can cause diverging block residency lifetimes across instances, even under identical 

configuration, increasing effective global cache access cost [10]. 

Workload scheduling and load-balancing behavior further shape Cache Fusion traffic. Studies on 

RAC service placement show that uneven CPU or I/O saturation can unintentionally bias workload 

affinity toward specific instances, increasing synchronization overhead [11]. Latency amplification 

research indicates that under high-contention commit phases, localized congestion can propagate 

across the cluster, degrading global performance even when only a subset of nodes are stressed [12]. 

Runtime integration patterns observed in hybrid application–database deployments confirm that 

scaling behavior is highly sensitive to compute provisioning and session multiplexing strategies [13]. 

In low-code or orchestration-driven access frameworks, workload characteristics may shift rapidly as 

user-driven or automated workflows alter query locality, further modifying cache block residency 

patterns over time [14]. 

Empirical observations in large-scale enterprise deployments reinforce that Cache Fusion performance 

is governed not merely by cluster size, but by the interaction between workload variability, resource 

heterogeneity, and access locality dynamics [15]. Ensuring long-term stability therefore requires 

aligning RAC configuration with disciplined data engineering practices that regulate workload shape 

and synchronization pressure [16]. Automation strategies for workload orchestration and execution 

governance further help mitigate cache instability by smoothing access patterns and reducing sudden 

contention spikes across instances [17]. 

 

2. Methodology  

The methodology for analyzing Cache Fusion traffic under heterogeneous node loads in Oracle RAC 

was designed to isolate the workload, interconnect, and buffer state variables that affect global cache 

transfer latency. The study environment consisted of a multi-node RAC cluster configured with shared 

ASM storage and private interconnect networking using a dedicated low-latency RDMA-capable 

interface. Each node executed identical Oracle instance configurations, but CPU frequency scaling, 

NUMA memory architecture, and I/O throughput characteristics were varied to introduce controlled 

heterogeneity. This allowed the assessment of cache coherency behaviors when node performance 

asymmetry is driven by compute-layer variance rather than application-level load alone. 

Workload generation was executed using a synthetic transactional workload generator capable of 

producing both read-intensive and update-intensive query streams. The workload was partitioned such 

that specific transaction groups exhibited strong data locality, while others randomly distributed table 

access across all instances. This allowed measurement of cache block ownership residency stability 
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and frequency of block handoff across instances. Session stickiness and service-level connection 

routing were configured in multiple modes to analyze how connection affinity impacts block access 

locality under uneven node performance conditions. 

Global cache messaging traces were collected using RAC performance diagnostic infrastructure, 

including GCS/GES wait event sampling, block transfer message counters, and interconnect packet 

capture. Block state transitions, including CR block requests, current block remastering operations, 

and data block ping rates, were monitored to quantify coherency synchronization overhead. 

Timestamp-aligned traces were recorded to correlate individual block transfers with session-level 

DML/SELECT operations, enabling a direct mapping between application-level data access patterns 

and Cache Fusion traffic characteristics. 

To observe buffer cache residency shifts, the database buffer cache on each instance was sampled at 

micro-interval granularity to record hot block distribution. Each tracked block was tagged with 

instance ownership state, modification sequence, and time-to-reuse metrics. This enabled the 

identification of blocks that frequently transferred ownership due to conflicting access. The buffer 

cache sampling also supported the classification of blocks into stable-local, transient, and contested 

categories, providing insight into how data access divergence contributes to interconnect traffic 

amplification. 

Interconnect throughput and latency characteristics were measured using OS-level packet flow tracing 

and hardware-level port counters. Message queue depths, retransmission rates, and congestion 

indicators were monitored to identify network saturation events. The study also examined the impact 

of CPU scheduling perturbations on global cache service threads, focusing on how CPU starvation of 

GCS/GES processes on slower or overloaded nodes introduced synchronization delays visible at the 

cluster level. 

Node load heterogeneity was introduced using controlled CPU throttling, memory pressure, and 

background I/O disturbance workloads. These disturbances were applied selectively to individual 

nodes to observe how cluster behavior changed when one or more nodes exhibited lower effective 

processing capability. The study recorded not only the direct impact on block transfer latency but also 

secondary effects such as instance-level lock remastering, dynamic service relocation attempts, and 

adaptive affinity rebalancing executed by the RAC load distribution logic. 

To quantify scalability behavior, the workload was iteratively scaled by increasing session counts and 

transaction throughput. At each scaling stage, global cache wait distribution, transaction completion 

latency, and CPU utilization profiles were recorded. The objective was to determine threshold 

inflection points at which cache coherency overhead overtakes compute throughput, resulting in 

diminishing performance returns as cluster load increases unevenly. These measurements supported 

the construction of performance curves that describe RAC throughput under progressively imbalanced 

node conditions. 

Finally, a controlled failover and load redistribution scenario was executed to analyze how Cache 

Fusion behaviors evolve during cluster reconfiguration. This included observing the behavior of 

surviving nodes when a slower node was temporarily isolated or removed. The transition effects on 

block ownership, lock mastering roles, and recovery traffic patterns were recorded to evaluate the 

resilience of coherency maintenance mechanisms under abrupt topology shifts. 

 

3. Results and Discussion 

The results demonstrate that heterogeneous node performance has a direct and measurable impact on 

Cache Fusion message volume, block transfer latency, and global serialization delays. Under uniform 
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compute conditions, block residency stability remained high and interconnect traffic followed 

consistent CR and current block request patterns. However, when CPU or memory throttling was 

selectively applied to a single node, that node became a coherency lag point, increasing block 

ownership transfer frequency and elevating GCS/GES wait events cluster-wide. This effect occurred 

even when the impaired node handled only a small fraction of user workload, confirming that the 

slowest node dictates the upper bound of global coherency performance. 

Workload runs under mixed read–write access patterns revealed accelerated hot block pinging when a 

node exhibited reduced responsiveness. This behavior significantly increased “gc current block busy” 

and “gc cr request” wait times, indicating that consistency traffic amplification is driven by ownership 

churn rather than volume of data accessed. Once a node slowed sufficiently to delay its global cache 

service threads, coherency congestion propagated horizontally across the cluster. This behavior is 

clearly reflected in Table 1, where the average Cache Fusion transfer latency increases from 0.9 ms in 

a uniform cluster to 4.8 ms under heavy throttling conditions. 

 

Table 1. Cache Fusion Performance Metrics Under Node Load Variation 

Scenario Avg. Global 

Cache Transfer 

Latency (ms) 

Hot Block 

Contention Rate 

(transfers/sec) 

GCS/GES 

Queue Depth 

(avg) 

Cluster 

Throughput 

Change (%) 

Uniform Node 

Load 

0.9 ms 120 4 Baseline (0%) 

Mild CPU Throttle 

on Node 3 

1.7 ms 260 9 −12% 

Heavy CPU 

Throttle on Node 3 

4.8 ms 720 21 −37% 

Memory Pressure 

on Node 2 

3.9 ms 640 18 −29% 

Node 3 Removed 

(3-node → 2-node) 

1.1 ms 150 5 +16% (stabilization 

rebound) 

 

Interconnect monitoring showed that network bandwidth was not the initial limiting factor; instead, 

delays emerged at the GCS/GES scheduling layer. Queue depth growth was observed on the impacted 

node prior to any packet-level congestion, which confirms that coherency stalls originate from CPU 

scheduling latency rather than raw network throughput saturation. As global cache requests stalled, 

retransmission logic increased message repetition and intensified packet demands, further degrading 

latency. The system showed a self-amplifying degradation cycle, driven by the slow node’s inability to 

perform coherency arbitration in real time. 

Buffer cache residency sampling provided additional structural insight. Under uniform load, 

frequently accessed data blocks remained localized and exhibited high reuse rates. Under node 

heterogeneity, the same blocks became transient, repeatedly transferring ownership across instances 

rather than stabilizing. This prevented buffer cache locality formation, reducing effective cache hit 

ratios. As shown in Table 1, the hot block contention rate rises sharply from 120 transfers/sec to over 

720 transfers/sec in heavy throttling conditions, directly linking node lag to coherency churn. 
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The failover test further reinforced this conclusion: removing the impaired node caused an immediate 

16% throughput recovery even before workload balancing was complete. This validates a key 

principle: RAC performance scales with uniformity, not size. A smaller but latency-stable cluster 

provides higher throughput than a larger but asymmetrically performing one. 

 

4. Conclusion 

The results of this study clearly demonstrate that Cache Fusion performance in Oracle RAC is 

governed by uniformity of node latency characteristics rather than total cluster node count or raw 

compute capacity. When all instances operated under balanced load, block residency patterns 

remained stable and interconnect exchange overhead stayed within predictable ranges. However, 

when even a single node experienced reduced CPU scheduling availability or memory pressure, 

cluster-wide coherency synchronization degraded disproportionately. The performance deterioration 

shown in Table 1 where average global cache transfer latency increased from 0.9 ms to 4.8 ms and hot 

block contention surged six-fold under heavy throttling highlights that coherency bottlenecks are 

magnified by the slowest node, not mitigated by faster ones. 

The analysis also confirms that coherency stalls originate primarily in GCS/GES coordination threads, 

not from interconnect bandwidth limitations. Queue depth growth, retransmission bursts, and 

ownership churn patterns observed in the impaired-node scenarios indicate that global 

synchronization delay propagates outward even when network throughput remains nominally under-

capacity. Buffer cache residency transitions further reinforce the systemic effect: under node 

heterogeneity, frequently accessed blocks cease to develop stable locality and instead circulate 

repeatedly between nodes. This results in a feedback loop where latency drives contention, and 

contention drives further latency, accelerating degradation under heavy mixed workloads. 

Finally, the failover scenario demonstrated that removing the impaired node immediately improved 

cluster throughput by 16%, despite reducing total compute resources. This underscores a foundational 

operational principle: RAC clusters must be tuned for latency symmetry before scaling for capacity. 

Practical optimization must therefore prioritize CPU scheduling fairness, NUMA memory 

accessibility, interconnect packet processing determinism, and proactive detection of node drift. For 

production RAC environments, ongoing performance validation should include node equivalence 

audits, coherency traffic baselining, and automated triggers for service relocation or node quarantine 

when latency divergence exceeds threshold tolerance. 
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