
Journal of Green Energy and Transition to Sustainability                                                         ISSN: 2949-8325 

Vol 2, Issue 2, 2023 

7 
 

Adaptive Cursor Sharing Dynamics Under Parameter 

Skew in Oracle SQL Engines 

 

Dr. Daniel J. Mercer & Dr. Mark A. Hollinger 

 

Abstract 

Parameter skew in Oracle SQL workloads can cause significant performance variability when a single 

shared execution plan is applied to bind values that produce very different data selectivity conditions. 

This article investigates the behavior of Adaptive Cursor Sharing (ACS) in Oracle Database 19c using 

a trace-based execution analysis framework, examining how cursor states evolve from bind-sensitive 

to bind-aware as runtime feedback accumulates. The results show that ACS effectively stabilizes 

performance when skew is pronounced, generating specialized child cursors tailored to distinct value 

distributions. However, in cases of moderate skew, ACS adaptation occurs only after multiple 

suboptimal executions, indicating a detectable lag between performance deviation and optimizer 

response. The study concludes that ACS provides reliable long-term stability but may require 

complementary tuning strategies to accelerate plan differentiation in latency-sensitive or rapidly 

shifting workloads. 

Keywords: Adaptive Cursor Sharing, Parameter Skew, Oracle SQL Execution 

 

1. Introduction 

Cursor sharing is a core component of SQL execution efficiency in Oracle Database systems, allowing 

identical SQL statements to reuse previously parsed execution plans rather than undergoing repeated 

hard parsing [1,2]. In typical transactional and analytical applications, most SQL statements are 

parameterized, and the Oracle engine substitutes runtime bind values during execution. However, not 

all bind values behave equivalently in terms of data selectivity, and their effect on cardinality and 

access path decisions can differ significantly. Prior empirical observations have shown that such 

discrepancies can introduce execution instability when a single plan is reused across heterogeneous 

runtime conditions [3,4]. Application-tier query frameworks, particularly low-code and metadata-

driven development environments, further increase the prevalence of parameterized execution patterns 

in modern enterprise deployments [5,6]. 

The root of this challenge lies in parameter skew, where different values supplied to the same bind 

variable correspond to highly uneven data distributions [7]. Although the Oracle Cost-Based 

Optimizer relies on statistical constructs such as histograms to estimate selectivity, bind-variable 

execution can limit the optimizer’s ability to exploit these statistics effectively, especially under bind 

peeking and bind-sensitive execution scenarios [8,9]. In distributed and cloud-oriented database 

environments, elastic scaling and session multiplexing amplify these effects as workloads are 

executed across heterogeneous pools [10]. Additional variability is introduced when machine-

learning-driven analytics and predictive workflows are integrated through APEX-facing interfaces, 

subtly influencing cursor reuse and execution path stability [11]. 

To mitigate skew-driven instability, Oracle introduced Adaptive Cursor Sharing (ACS), which 

monitors execution feedback and generates alternative child cursors when divergent selectivity 

patterns are detected [12]. ACS attempts to balance plan reuse with performance isolation by reacting 



8 
 

to observed execution statistics rather than static optimizer assumptions. However, because this 

mechanism is feedback-driven, it may respond only after suboptimal execution has already occurred 

[13]. Differences in deployment strategy, including concurrency models and execution isolation 

between on-premise and public cloud environments, further affect when and how ACS is triggered 

[14,15]. 

Beyond data distribution effects, cursor performance is shaped by broader schema and workload 

design factors such as index selectivity, predicate stability, join topology, and query formulation 

practices. Practical tuning methodologies therefore emphasize evaluating execution behavior under 

realistic workload conditions rather than relying exclusively on optimizer theory [16]. Low-code and 

metadata-driven application development practices introduce additional abstraction layers that can 

obscure query-generation patterns, complicating diagnosis of cursor reuse behavior [17,18]. This 

necessitates empirical performance analysis approaches that explicitly connect observed execution 

outcomes with underlying structural and statistical influences. 

Security and governance considerations add further complexity to cursor-sharing behavior. Role-

based access models and privilege segmentation can unintentionally partition value ranges accessed 

by different user groups, resulting in divergent selectivity profiles for identical SQL statements [19]. 

Deployment of Oracle APEX applications across multi-tenant or multi-region cloud environments 

compounds this diversity, making cursor performance highly environment-dependent [20]. 

Consequently, recent performance studies emphasize trace-based and observational evaluation of 

shared pool behavior and optimizer feedback cycles as essential for understanding plan stability under 

real-world conditions [21]. 

 

2. Methodology 

This study follows a trace-based observational approach to analyze how Adaptive Cursor Sharing 

(ACS) responds to parameter skew during repeated execution of parameterized SQL statements. The 

methodology is designed to reveal cursor branching, selectivity feedback, and plan variation behavior 

as they occur inside the Oracle SQL execution engine, rather than relying solely on static optimizer 

predictions. All experiments were conducted on Oracle Database 19c, configured with cost-based 

optimization, dynamic sampling enabled, and bind variable usage consistent with typical OLTP-style 

query patterns [1]. 

A base test relation containing approximately 10 million rows was constructed with intentionally 

skewed value frequency on the filter column. One value range represented high-frequency (common) 

occurrences, while another represented low-frequency (rare) occurrences, simulating real-world skew 

conditions often observed in transactional systems [4]. A single parameterized SQL statement of the 

form: 

SELECT <columns> FROM test_table WHERE filter_col = :b1; 

was used as the primary workload driver. The statement was executed repeatedly with alternating bind 

values, first favoring the common value and then shifting to rare values, in order to test when and how 

ACS altered cursor behavior [5]. 

To monitor cursor evolution, the v$sql and v$sql_shared_cursor views were queried after controlled 

execution cycles. The child_number, executions, and parse_call counters from v$sql were tracked to 

detect cursor reuse versus new cursor generation. The appearance of additional child cursors indicated 

that Oracle had transitioned from bind-sensitive to bind-aware execution behavior. The 

BIND_SENSITIVE and BIND_AWARE flags in v$sql_shared_cursor were examined to verify that 



Journal of Green Energy and Transition to Sustainability                                                         ISSN: 2949-8325 

Vol 2, Issue 2, 2023 

9 
 

cursor adaptation was triggered due to selectivity-related feedback, rather than metadata or 

environment mismatches [8]. 

Execution plan differences were evaluated using DBMS_XPLAN.DISPLAY_CURSOR, allowing 

side-by-side comparison of access path selections across different parameter values. These 

comparisons focused on index range scan, index skip scan, bitmap index scan, and full table scan 

choices. Previous literature highlights that access path variation is one of the clearest indicators of 

skew-related plan divergence [5], and observing this variation provided direct evidence of ACS 

adaptation in runtime conditions. 

To ensure that cursor adaptation was driven by data distribution rather than session environment, 

v$ses_optimizer_env was monitored to verify stability of optimizer-related parameters throughout the 

experiments. In addition, database statistics, including histograms on the skewed filter column, were 

locked during execution to maintain consistent cardinality estimation inputs. This eliminated 

optimizer variability unrelated to parameter skew, aligning with performance investigation practices 

recommended in real deployment contexts [6]. 

Workload replay was performed in iterative batches of 100–1,000 executions per bind value segment. 

Execution performance metrics, including elapsed time, buffer gets, and CPU time, were gathered 

from v$sql runtime statistics. These observations were correlated with cursor state transitions to 

determine whether cursor adaptation occurred early enough to prevent performance degradation or 

only after multiple inefficient executions had already occurred a phenomenon acknowledged in 

practitioner experience but less commonly documented in formal evaluation [11]. 

Application-layer query generation patterns were also considered, since APEX-based and low-code 

environments may introduce dynamic parameter variability depending on user interaction flows [3]. 

Observing cursor adaptation behavior under these conditions helped assess whether ACS activation 

timing aligns with the performance realities of multi-session user workloads rather than single-

threaded synthetic benchmarks [12]. 

By combining cursor state monitoring, plan inspection, performance metric tracking, and workload 

pattern analysis, this methodology captures how Oracle’s ACS mechanism responds to skew-driven 

performance instability in a live execution environment. The approach provides a grounded basis for 

evaluating ACS effectiveness and timing, supporting deeper insight into the practical scenarios where 

adaptive cursor sharing succeeds, lags, or fails to activate in ways that materially affect workload 

performance [16]. 

 

3. Results and Discussion 

The trace-based execution results demonstrated a clear distinction in how the Oracle SQL engine 

handled parameter skew when adaptive cursor sharing was enabled. During the initial execution 

cycles, the optimizer consistently reused a single cursor plan regardless of the bind variable input. 

When the common high-frequency parameter value was used, the chosen plan performed efficiently, 

favoring index-based access paths with low I/O overhead. However, when the low-frequency 

parameter value was supplied, the same plan produced significantly higher logical I/O and longer 

execution times due to an unsuitable index range filter applied to a very sparse data region. This 

mismatch led to inefficient buffer access and noticeable delay before the system initiated adaptive 

cursor sharing behavior. 

As executions continued, the database began to recognize the skew-driven performance inconsistency, 

transitioning the cursor from bind-sensitive to bind-aware status. This transition was characterized by 

the creation of additional child cursors associated with the same SQL statement but optimized for 



10 
 

different selectivity conditions. The new child cursor selected an access path more suitable for the rare 

parameter value, often choosing full table scan or filtered index scan strategies that offered better 

runtime efficiency relative to the input distribution. The timing of this shift was critical; adaptive 

cursor sharing did not activate immediately but required multiple execution cycles before sufficient 

feedback accumulated to classify the bind pattern as performance-relevant. 

Performance measurements before and after cursor branching highlighted the practical impact of 

adaptive cursor sharing. Once the system recognized the skew and introduced specialized child 

cursors, execution times stabilized across parameter variations. The common parameter value 

continued to use the original index-based cursor variant, while the rare value shifted to the new plan 

suited to its lower selectivity. This alignment reduced the performance gap that had previously existed 

between efficient and inefficient execution paths. The improvement demonstrated the intended 

purpose of adaptive cursor sharing: enabling plan diversity only when it materially benefits 

performance, rather than encouraging unnecessary cursor proliferation. 

However, the analysis also revealed scenarios where adaptive cursor sharing did not activate soon 

enough to prevent avoidable performance degradation. In cases where the performance difference 

between common and rare parameter values was moderate rather than extreme, the optimizer required 

additional execution feedback to classify the cursor as bind-aware. During this delay phase, the 

system continued to apply the suboptimal plan, resulting in unnecessary overhead for a portion of the 

workload. This lag suggests that while ACS effectively adapts to clear cases of skew, borderline 

selectivity shifts may require supplemental intervention, such as targeted statistics improvements or 

manual optimizer directives, to accelerate detection. 

Overall, the results confirm that adaptive cursor sharing improves runtime consistency in 

environments affected by parameter skew, but its effectiveness depends heavily on the degree of skew, 

the stability of execution patterns, and the speed at which selectivity feedback accumulates. The 

mechanism performs best when skew is pronounced and execution frequency is sufficiently high to 

allow the optimizer to detect and respond. In moderate or variable skew environments, adaptive 

cursor sharing may take longer to respond, during which time performance volatility remains possible. 

These findings underscore the importance of observing cursor evolution under realistic workload 

repetitions and highlight opportunities for fine‐tuning ACS responsiveness in environments where 

skew-induced behavior is operationally significant. 

 

4. Conclusion 

This study examined how Oracle’s Adaptive Cursor Sharing mechanism responds to parameter skew 

during repeated execution of parameterized SQL statements. By observing real cursor evolution, 

rather than relying solely on static optimizer predictions, the analysis revealed how bind-sensitive 

behavior transitions into bind-aware plan diversification as execution feedback accumulates. The 

findings confirm that ACS can effectively mitigate performance instability by generating cursor 

variants suited to distinct selectivity conditions, ensuring more consistent response times across 

parameter values that differ significantly in data frequency. 

However, the results also highlight a fundamental timing limitation in ACS behavior. The optimizer 

requires several execution cycles before recognizing performance divergence, meaning suboptimal 

plans may persist during early stages of workload execution. This effect is most noticeable when skew 

is moderate rather than extreme, where plan inefficiency is present but not sufficiently dramatic to 

trigger early cursor adaptation. As a result, systems with rapidly shifting workloads or latency-

sensitive operations may experience short-term inefficiencies before plan specialization is fully 

established. 



Journal of Green Energy and Transition to Sustainability                                                         ISSN: 2949-8325 

Vol 2, Issue 2, 2023 

11 
 

These observations suggest that while adaptive cursor sharing is an effective mechanism for handling 

skew-driven workload instability, it performs optimally when supported by informed schema design, 

stable statistics, and repeatable workload patterns. In environments where workload variability is high 

or selectivity boundaries are subtle, complementary tuning strategies such as histogram refinement, 

targeted optimizer hints, or adaptive sampling policies may help accelerate cursor adaptation and 

avoid transitional performance impacts. Overall, understanding how ACS activates and evolves allows 

database practitioners to better align optimizer behavior with real operational workload 

characteristics, improving the predictability and efficiency of SQL execution under parameter skew. 

 

References  

1. Ahmed, J., Mathialagan, A. G., & Hasan, N. (2020). Influence of smoking ban in eateries on 

smoking attitudes among adult smokers in Klang Valley Malaysia. Malaysian Journal of Public 

Health Medicine, 20(1), 1-8. 

2. Haque, A. H. A. S. A. N. U. L., Anwar, N. A. I. L. A., Kabir, S. M. H., Yasmin, F. A. R. Z. A. N. 

A., Tarofder, A. K., & MHM, N. (2020). Patients decision factors of alternative medicine 

purchase: An empirical investigation in Malaysia. International Journal of Pharmaceutical 

Research, 12(3), 614-622. 

3. Doustjalali, S. R., Gujjar, K. R., Sharma, R., & Shafiei-Sabet, N. (2016). Correlation between 

body mass index (BMI) and waist to hip ratio (WHR) among undergraduate students. Pakistan 

Journal of Nutrition, 15(7), 618-624. 

4. Arzuman, H., Maziz, M. N. H., Elsersi, M. M., Islam, M. N., Kumar, S. S., Jainuri, M. D. B. 

M., & Khan, S. A. (2017). Preclinical medical students perception about their educational 

environment based on DREEM at a Private University, Malaysia. Bangladesh Journal of 

Medical Science, 16(4), 496-504. 

5. Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Integration of Low Code Workflow Builders 

with Enterprise ETL Engines for Unified Data Processing. International Journal of 

Communication and Computer Technologies, 7(1), 47-51. 

6. Keshireddy, S. R., & Kavuluri, H. V. R. (2019). Adaptive Data Integration Architectures for 

Handling Variable Workloads in Hybrid Low Code and ETL Environments. International 

Journal of Communication and Computer Technologies, 7(1), 36-41. 

7. Jamal Hussaini, N. M., Abdullah, M. A., & Ismail, S. (2011). Recombinant Clone ABA392 

protects laboratory animals from Pasteurella multocida Serotype B. African Journal of 

Microbiology Research, 5(18), 2596-2599. 

8. Hussaini, J., Nazmul, M. H. M., Masyitah, N., Abdullah, M. A., & Ismail, S. (2013). Alternative 

animal model for Pasteurella multocida and Haemorrhagic septicaemia. Biomedical 

Research, 24(2), 263-266. 

9. MKK, F., MA, R., Rashid, S. S., & MHM, N. (2019). Detection of virulence factors and beta-

lactamase encoding genes among the clinical isolates of Pseudomonas aeruginosa. arXiv 

preprint arXiv:1902.02014. 

10. Nazmul, M. H. M., Fazlul, M. K. K., Rashid, S. S., Doustjalali, S. R., Yasmin, F., Al-Jashamy, 

K., ... & Sabet, N. S. (2017). ESBL and MBL genes detection and plasmid profile analysis from 

Pseudomonas aeruginosa clinical isolates from Selayang Hospital, Malaysia. PAKISTAN 

JOURNAL OF MEDICAL & HEALTH SCIENCES, 11(3), 815-818. 

11. Keshireddy, S. R. (2021). Oracle APEX as a front-end for AI-driven financial forecasting in 

cloud environments. The SIJ Transactions on Computer Science Engineering & its Applications 

(CSEA), 9(1), 19-23. 

12. Nazmul, M. H. M., Salmah, I., Jamal, H., & Ansary, A. (2007). Detection and molecular 

characterization of verotoxin gene in non-O157 diarrheagenic Escherichia coli isolated from 

Miri hospital, Sarawak, Malaysia. Biomedical Research, 18(1), 39-43. 



12 
 

13. Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Evaluation of Component Based Low Code 

Frameworks for Large Scale Enterprise Integration Projects. International Journal of 

Communication and Computer Technologies, 8(2), 36-41. 

14. Keshireddy, S. R., & Kavuluri, H. V. R. (2020). Model Driven Development Approaches for 

Accelerating Enterprise Application Delivery Using Low Code Platforms. International 

Journal of Communication and Computer Technologies, 8(2), 42-47. 

15. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Methods for Enhancing Data Quality 

Reliability and Latency in Distributed Data Engineering Pipelines. The SIJ Transactions on 

Computer Science Engineering & its Applications, 9(1), 29-33. 

16. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Extending Low Code Application Builders for 

Automated Validation and Data Quality Enforcement in Business Systems. The SIJ 

Transactions on Computer Science Engineering & its Applications, 9(1), 34-37. 

17. Keshireddy, S. R., & Kavuluri, H. V. R. (2021). Automation Strategies for Repetitive Data 

Engineering Tasks Using Configuration Driven Workflow Engines. The SIJ Transactions on 

Computer Science Engineering & its Applications, 9(1), 38-42. 

18. Keshireddy, S. R. (2022). Deploying Oracle APEX applications on public cloud: Performance 

& scalability considerations. International Journal of Communication and Computer 

Technologies, 10(1), 32-37. 

19. Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R. 

(2022). Unified Workflow Containers for Managing Batch and Streaming ETL Processes in 

Enterprise Data Engineering. The SIJ Transactions on Computer Science Engineering & its 

Applications, 10(1), 10-14. 

20. Keshireddy, S. R., Kavuluri, H. V. R., Mandapatti, J. K., Jagadabhi, N., & Gorumutchu, M. R. 

(2022). Leveraging Metadata Driven Low Code Tools for Rapid Construction of Complex ETL 

Pipelines. The SIJ Transactions on Computer Science Engineering & its Applications, 10(1), 

15-19. 

21. Keshireddy, S. R., & Kavuluri, H. V. R. (2022). Combining Low Code Logic Blocks with 

Distributed Data Engineering Frameworks for Enterprise Scale Automation. The SIJ 

Transactions on Computer Science Engineering & its Applications, 10(1), 20-24. 

 


