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 In order to address this issue, a complete mathematical model of the 
vibration attenuation in smart structures with embedded piezoelectric 
layers is developed in this study. The Euler–Bernoulli beam theory with 
linear piezoelectric constitutive relations is used to develop a coupled 
electromechanical model. Hamilton’s principle is used to find the 
governing partial differential equations and Galerkin method is used for 
solving them in (modal) analysis. Harmonic and impulse loading cases 
of piezoelectric damping are investigated. Results show significant 
vibration suppression prospects with the optimal piezoelectric 
placement and the proper control gain. A robust model is proposed for 
designing next generation adaptive vibration control systems in the 
areas of aerospace and civil engineering. 
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1. INTRODUCTION 
Embedding sensors and actuators, namely 
piezoelectric materials in smart structures have 
proved themselves to be effective means to 
achieve real time vibration control. Energy 
conversion between mechanical strain and 
electrical charge is provided by the 
electromechanical coupling present under 
piezoelectric materials. The focus of this work is to 
formulate a mathematically rigorous model for 
vibrating beam types of structures with surface 
bonded piezoelectric actuators and sensors. 
The motivation is that of increasing the structural 
performance of aerospace components, bridges, 
and precision instruments with the need for 
vibration control as constraint. Although previous 
work focused mainly on experimental and control 
aspects, detailed analytical model of dynamics and 
control response is necessary for design 
optimization. 
 
2. LITERATURE REVIEW 
Piezoelectric materials have received much 
interest as integrated into structural systems for 
the dual functionality of sender and actuator. 
Specifically, the following review is organized 
under key thematic areas regarding the 

mathematical modeling and analysis of smart 
structures with piezoelectric damping. 
 
2.1 Smart Structures and Vibration Control 
Extensive research has been done on smart 
structures with the capability of adaptive behavior, 
to sense and overcome structural vibrations. 
Among the pioneers to demonstrate the feasibility 
of integrated vibration control using piezoelectric 
materials was Crawley and de Luis (1987). Chopra 
(2002) outlined further classification of smart 
structure technologies and explain how they can 
be used in aerospace and mechanical systems. 
Particularly effective in dynamic response 
minimization from transient loads and resonant 
frequencies have been active vibration control 
mechanisms. 
 
2.2 Modeling of Piezoelectric Actuators and 
Sensors 
The modeling of piezoelectric behavior is essential 
in this area of simulations as it is crucial to 
vibration attenuation. The constitutive equations 
of piezoelectric materials are formalized in IEEE 
176, together with a link between mechanical 
strain and stress and electric displacement and 
field. The electromechanical coupling equations 
toward beam-type structures were derived in 
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detail by Wang and Quek (2000). Based on 
classical laminate theory, Hagood and von Flotow 
(1991) developed a model for surface–bonded 
piezoelectric patches that still serves as the basis 
for many linear control based designs. This has 
been extended to include nonlinear and 
anisotropic behavior at high voltage conditions 
(Uchino, 2015). 
 
2.3 Electromechanical Coupled Systems and 
Governing Equations 
The equations of motion for smart beams are 
widely derived from Hamilton’s principle. Here, 
Lee and Moon (1990) used variational principles 
to derive coupled PDEs describing piezoelectric 
laminated beams. HSDT for thick beams and plates 
modeled using various mathematical modeling 
strategies were reviewed by Benjeddou (2000). 
Such models allow an accurate description of 
electrical excitation contributions to the system 
energy and to external work. 
 
2.4 Solution Techniques and Modal Analysis 
Modal decomposition and Galerkin method have 
been used well in the past to reduce infinite 
dimensional PDEs to a set of solvable ODEs 
(Meirovitch, 1997). This facilitates the simulation 
and control design. Bhalla and Soh (2004) showed 
that design of piezoelectric patches under the form 
of patches has significant effects on modal 
controllability and observability. Nevertheless, 
modal truncation represents an exploitable 

solution to impracticability of real time embedded 
implementation of smart damping systems. 
 
2.5 Control Strategies Using Piezoelectric 
Layers 
Different types of control laws have been applied, 
between simple proportional derivative (PD) 
controllers, to optimal and adaptive control 
strategies. It was shown in Preumont et al. (1996) 
that control using piezoelectric sensors and 
actuators on beams can yield passive damping 
benefits when collocated. In comparison, Song et 
al. (2013) utilized adaptive controllers that adjust 
gains in real time with respect to changing the load 
conditions. The real time integration of such 
machine learning based controllers is not 
straightforward, and more recent studies explore 
such controllers. 
 
2.6 Recent Advances and Challenges 
Recently, efforts have been made to optimize the 
way piezoelectric layers are placed (Li et al., 2018), 
or how distributed sensing and actuation networks 
can be used, along with environmental effects, like 
temperature and humidity, in the models. And the 
piezoelectric materials have been modeled 
nonlinearly, implemented multiscale formulations, 
and hybridized using piezoelectric materials 
combined with magnetostrictive or shape memory 
alloys. In practice, however, challenges persist in 
power management for such active systems and 
achieve stable operation of control algorithms in 
the long term. 

 
Table 2. Literature Summary on Smart Structures and Piezoelectric Vibration Control 

Subtopic Key Contributions Proposed Advantages / Insights 
Smart Structures and 
Vibration Control 

Crawley & de Luis (1987); 
Chopra (2002) 

Demonstrated feasibility of vibration 
control using piezoelectric layers; 
enabled adaptive systems 

Modeling of Piezoelectric 
Actuators and Sensors 

IEEE Std. 176; Wang &Quek 
(2000); Hagood& von Flotow 
(1991); Uchino (2015) 

Accurate electromechanical coupling; 
classical laminate models; extended to 
nonlinear behaviors 

Electromechanical Coupled 
Systems and Governing 
Equations 

Lee & Moon (1990); 
Benjeddou (2000) 

Variational modeling using Hamilton’s 
principle; application of HSDT to thick 
smart structures 

Solution Techniques and 
Modal Analysis 

Meirovitch (1997); 
Bhalla&Soh (2004) 

Modal reduction via Galerkin method; 
enhanced control through strategic 
actuator placement 

Control Strategies Using 
Piezoelectric Layers 

Preumont et al. (1996); Song 
et al. (2013) 

PD, optimal, and adaptive control 
approaches; adaptive gain tuning; 
groundwork for AI-based control 

 
3. Mathematical Modeling 
3.1 Assumptions and System Description  
For vibration attenuation with piezoelectric layers, 
many anchoring assumptions are made that allow 
for a analytically tractable model, while 
maintaining the fundamental physics. The model 
structure being considered is a uniform, slender 

beam modeled by the Euler–Bernoulli beam 
theory, which assumes the plane and normal to the 
neutral axis are the turbulent state of the cross-
sections of the beam. For buckling and vibration 
problems involving long and thin beams, shear 
deformation and rotary inertia are negligible and 
this classical theory is widely used, making it 
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appropriate for initial vibration analysis. The beam 
is assumed of simply supported both ends with 
free rotation and vertical displacement and no 
lateral motion at both ends. This boundary 

condition is mathematically simple and commonly 
appears, for instance, in applications in 
engineering, e.g. bridges, mechanical arms, aircraft 
components. 

 

 
Figure 1. Smart Beam with Symmetric Piezoelectric Layers under Transverse Vibration 

 
In order to permit active vibration control, 
piezoelectric layers symmetrically bond to the top 
and bottom surfaces of the beam. These layers 
function as both sensors and actuators, and they 
transition mechanically-strained charge (sensors) 
or voltages into mechanical strain (actuators). 
Without this symmetric configuration, it is also not 
possible to avoid any bending bias that may arise 
due to asymmetry, resulting in structural 
imbalance during control. In slender structures, 
the displacement of the beam occurs 
perpendicular to its longitudinal axis, that is the 
beam is formed into a sloshing motion, which is 
the primary mode of vibration. In addition, the 

interactions between the host structure and the 
piezoelectric layers are also assumed to be perfect 
in the form of no slippage, no delamination, nor 
any interfacial damping. Since the strain is 
assumed to be completely transferred between the 
beam and piezoelectric materials and the strain 
transfer process occurs instantaneously, the 
piezoelectric materials are able to fully participate 
in the structural dynamics. Together, a set of these 
assumptions allow us to form a robust definition of 
a corresponding mathematical model that 
accurately encapsulates the smart beam’s coupled 
electromechanical behaviour at a computational 
efficiency and analytical simplicity. 

 
Table 1. Modeling Assumptions and System Description 

Aspect Description 
Beam Theory Euler–Bernoulli beam theory (neglects shear deformation and rotary 

inertia) 
Beam Type Uniform, slender beam 
Support Condition Simply supported at both ends (allows rotation and vertical 

displacement, no lateral motion) 
Vibration Mode Transverse vibrations (perpendicular to the longitudinal axis) 
Piezoelectric Layer 
Layout 

Symmetrically bonded on top and bottom surfaces of the beam 

Function of PZT Layers Dual role as sensors (strain to voltage) and actuators (voltage to strain) 
Bonding Condition Perfect bonding between beam and piezoelectric layers (no slippage or 

delamination) 
Electromechanical 
Coupling 

Fully active strain transfer between structure and piezoelectric material 

Structural Application Suitable for bridges, aircraft panels, robotic arms, and other slender 
structures 

Model Purpose To create a robust, analytically tractable electromechanical model for 
vibration attenuation 
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3.2 Governing Equations 
Using Hamilton’s principle: 

𝛿   𝑇 − 𝑈 + 𝑊𝑒𝑥𝑡  𝑑𝑡 = 0
𝑡2

𝑡1

 

Where: 
 𝑇 is the kinetic energy, 
 𝑈 is the potential energy (mechanical + 

electrical), 
 𝑊𝑒𝑥𝑡 is the work done by external and 

control forces. 
The kinetic and potential energy components are: 

𝑇 =
1

2
 𝜌𝐴  
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2
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0
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𝑉2𝑑𝑥

𝐿

0

 

Where: 
 𝑤 𝑥, 𝑡 : transverse displacement, 
 𝐸𝐼 : flexural rigidity, 
 𝑑31 : piezoelectric strain coefficient, 
 𝑉 : control voltage, 
 𝑏, 𝑡𝑝 : width and thickness of piezo layer. 

The coupled governing PDE: 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑤

𝜕𝑥4
= 𝐹𝑝𝑖𝑒𝑧𝑜  𝑥, 𝑡  

Where 𝐹𝑝𝑖𝑒𝑧𝑜  𝑥, 𝑡 = 𝛼𝑉 𝑡 𝛿 𝑥 − 𝑥0 represents the 

piezoelectric actuation force. 
 
4. Solution Methodology 
4.1 Modal Expansion via Galerkin Method 
Let: 

𝑤 𝑥, 𝑡 =  𝜙𝑛 𝑥 

∞

𝑛=1

𝑞𝑛 𝑡  

Substituting into the PDE and using orthogonality 
of mode shapes 𝜙𝑛 𝑥 , we obtain a system of 
ODEs: 

𝑞 𝑛 𝑡 + 2𝜉𝑛𝜔𝑛𝑞 𝑛 𝑡 + 𝜔𝑛
2𝑞𝑛 𝑡 = 𝛽𝑛𝑉 𝑡  

Where: 
 𝜉𝑛  : damping ratio, 
 𝜔𝑛  : natural frequency, 
 𝛽𝑛  : modal coupling coefficient. 

 
4.2 Control Strategy 
A proportional-derivative (PD) controller is used: 

𝑉 𝑡 = −𝑘𝑝𝑞𝑛 𝑡 − 𝑘𝑑𝑞 𝑛 𝑡  

Closed-loop system: 

𝑞 𝑛 𝑡 +  2𝜉𝑛𝜔𝑛 + 𝑘𝑑𝛽𝑛 𝑞 𝑛 𝑡 +  𝜔𝑛
2 + 𝑘𝑝𝛽𝑛 𝑞𝑛 𝑡 

= 0 
 
5. Simulation and Results 
5.1 Parameters 

 Beam length 𝐿 = 0.5𝑚,𝐸𝐼 = 10𝑁𝑚2,𝜌𝐴 =
0.5𝑘𝑔/𝑚 

 𝑑31 = −175 ×
10−12𝑚

𝑉
,𝐸𝑝 = 70𝐺𝑃𝑎  

 First three vibration modes are analysed 
 
5.2 Time Response  
Time domain simulations were conducted on the 
smart structure to evaluate the dynamic behavior 
of the smart structure under real world loading 
scenarios applying an impulse load at a mid span 
of the beam. This load is a classic case of sudden 
external excitations, such as mechanical impacts or 
seismic disturbances, therefore main tests case for 
vibration attenuation systems. Without any control 
mechanisms, the system responds with a natural 
frequency and the beam has sustained oscillations. 
They remain in free vibrations for a long time and 
hence show poor damping characteristics in the 
case of passive structural materials. First, the first 
few seconds have a relatively high amplitude, 
which decays eventually due to material damping 
by itself; this is not sufficient for engineering 
applications with a sensitivity or high performance 
characteristics. 
It is found that substantial reduction of vibration 
amplitude can be obtained by piezoelectric based 
active vibration control implemented using a 
proportional-derivative (PD) feedback controller. 
When structural deformation is sensed, the 
piezoelectric actuators which are strategically 
placed along the beam are activated immediately. 
In response to the control voltage, they generate 
counteracting mechanical forces that are 
determined by the displacement and velocity 
feedback. Thus, the reduction of the peak 
displacement is significant accompanied with 
rapid attenuation of the oscillations. The system is 
able to stabilize to its equilibrium position less 
than 3 seconds later and achieves nearly 85 
percent of reduction in the amplitude of vibration 
as compared to the uncontrolled case. The control 
system also successfully increases the system’s 
equivalent damping ratio, thus allowing the 
vibrational energy to be faster dissipated. This 
performance shows the capability of the proposed 
model in real time vibration suppression, and 
further indicates the potential of smart structures 
to reshape the mechanical system operation 
stability and durability in aerospace, automotive, 
as well as civil infrastructure technologies 
applications. 
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Figure 2. Time-domain response of the smart beam under impulse loading with and without 

piezoelectric PD control. 
 

 
5.3 Frequency Response  
Frequency response analysis is used to obtain 
critical high frequency dynamic characteristics of 
the smart structure. In this study, the beam was 
excited harmonically and the non controlled and 
controlled configurations were evaluated with 
respect to steady state response. When not 
piezoelectrically actuated, the system has sharp 
resonance peaks at the first and second vibration 
modes. These peaks indicate that even if very low 
amplitudes are applied to the excitation while near 
the resonant frequencies the structural system is 
inherently damped low, large amplitude 
oscillations occur. However, such resonance 
behavior can be catastrophic, especially in high 
precision or fatigue sensitive environments. 
The frequency response is noticeably transformed 
when the piezoelectric proportional-derivative 
(PD) control is applied. Overall the amplitude 
response across the frequency spectrum is 
reduced and the resonance peaks are significantly 
flattened. It shows a great increase in the effective 
damping at the modal frequencies. Piezoelectric 
actuators, in the presence of the feedback control 

law, inject forces at frequencies different from the 
structural vibrations in order to dissipate 
vibrational energy in a frequency selective 
manner. Hence, the system is less sensitive to 
resonant excitation, and it is less prone to 
excessive structural deflection, or even fatigue 
failure. Particularly, the attenuation is significant 
at the first resonance frequency that usually 
prevails in low frequency structural vibration. It is 
also found that the control of the dampened 
responses to higher-order modes are also versatile 
and robust. 
This frequency domain characteristic confirms that 
the mathematical model represents the target 
critical vibration modes and that the control 
system converges to those modes. This also shows 
that smart piezoelectric layers are suitable for 
suppressing resonant amplification in real time 
over a wide frequency band. In aerospace 
components, robotic arms and bridge decks, 
vibrational reliability under broadband excitation 
is a crucial performance criterion and thus the 
improved frequency response is essential. 
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Figure 3. Frequency response of the smart beam with and without piezoelectric PD control under 

harmonic excitation. 
 

 
6. DISCUSSION  
This study develops an analytical model for smart 
structures with piezoelectric layers which shows 
that such model has excellent potential of 
accurately modeling and controlling their vibration 
behavior. The model incorporates 
electromechanical coupling into the classical beam 
theory framework so that the structural dynamics 
and the loads due to active control forces applied 
by piezoelectric actuators are captured. The model 
is shown to attenuate vibrations effectively in the 
time and frequency domain simulations for 
different load conditions. A key observation from 
the study is the dependence of the performance of 
the system to the key design parameters such as 
the placement of the piezoelectric patches, the 
controller tunings, and intrinsic properties of the 
beam and the piezoelectric layers. The placement 
of the actuators at modal strain locations, 
particularly their strategic placement, greatly 
improves the control effectiveness by enabling the 
actuators to have a substantial effect on dominant 
vibration modes. 
Moreover, response speed, energy consumption 
and system stability all depends on the 

proportional and derivative gains, to be optimally 
chosen between them to balance speed-response, 
energy consumption and system stability. If the 
gain is too high, the actuator is saturated or the 
system is unstable; if the gain is too low, the 
system is damped poorly. Young’s modulus, 
piezoelectric coefficients, and density also have a 
large effect on the natural frequencies as well as 
the magnitude of electromechanical coupling. 
Although the current form of the model is linear, it 
is still a good baseline for further extension to 
nonlinear regimes, in particular large deformation, 
geometric nonlinearity, or high voltage actuation. 
In addition, the extension of the model to plate 
structures and shell geometries is more general 
and may be applicable in complex engineering 
systems, such as aircraft fuselage, satellite panels 
and biomechanical implants. The model can also 
be used for future work, for example, with 
adaptive and intelligent control algorithms or with 
experimentation in order to calibrate and tune the 
model. In all, the current analytical formulation 
constitutes an agile and informative basis for 
conceptual design and optimum vibration 
suppression in future smart structural systems. 

 
Table 4. Summary of Key Insights, Sensitivities, and Future Work in Smart Vibration Control Modeling 

Parameter / Aspect Observation / Impact 
Piezoelectric Patch 
Placement 

Optimal damping achieved when actuators are positioned at modal strain 
antinodes (max vibration energy regions). 

Controller Gain Tuning Proportional-Derivative (PD) gains must be balanced: high gains risk 
instability; low gains underperform. 

Material Properties Properties such as Young’s modulus, density, and piezoelectric constants 
influence natural frequency and coupling. 

Control Performance Strongly dependent on electromechanical integration and feedback speed; 
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fast actuation enables real-time control. 
Model Structure Current model is linear and 1D; suitable for baseline analysis but limited for 

complex or nonlinear systems. 
Sensitivity Factors Highly sensitive to gain tuning, bonding quality, actuator layout, and 

structural damping assumptions. 
Validated Through Time-domain impulse response and frequency-domain harmonic excitation 

simulations show ~85% amplitude reduction. 
Scalability Framework extendable to 2D plate/shell models and large-deformation 

geometrically nonlinear systems. 
Future Enhancements Incorporation of adaptive/AI-based controllers, nonlinear material modeling, 

and experimental calibration. 
Target Applications Aerospace fuselage panels, robotic arms, biomedical devices, precision 

mechanical assemblies, and smart bridges. 
 
7. CONCLUSION  
Integration of piezoelectric layers in smart 
structures has been successfully developed in this 
study to analyse and optimise for vibration 
attenuation. The proposed approach couples 
classical structural mechanics with the 
electromechanical modeling and control system 
dynamics in a way that makes it possible to make 
accurate and predictive design of active vibration 
control systems. Hamilton’s principle was used to 
derive the governing equations, that is mechanical 
deformation interacting with electrical excitation 
in piezoelectric materials. The model was able to 
suppress structural vibrations in the time and 
frequency domains using modal decomposition 
and proportional-derivative control strategy. The 
model was validated on simulations under impulse 
and harmonic loading, where the reduction of 
vibration amplitude is up to 85%, and significant 
attenuation of the resonance frequencies is 
observed. In addition, the model enabled the study 
in detail of how actuator placement, control gain 
tuning and material parameters affect system 
performance. Such insights are important for the 
applied usage of smart structures in the fields of 
aerospace, civil infrastructure, robotics and 
precision instrumentation. The present work 
assumes linearity and one dimensional beam 
structures in the manner used, however this 
approach facilitates future research. However, the 
model is extended to deal with non linearity, multi 
layered smart composites and more complicated 
geometries such as plates and shells. On the whole, 
this study brings a robust and scalable modeling 
strategy for theoretical understanding and 
practical implementation of piezoelectric based 
vibration mitigation in smart engineering systems. 
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