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 Industrial and industrial environments place increasing pressures on 
rotating machine systems to be operational efficient and reliable — 
which drives increasing focus on predictive maintenance (PdM) 
strategic utilization. The motor, turbine, pump, and compressor systems 
are subjected to continuous mechanical stresses and are subject to 
similar wear and performance degradation and failures. In this paper a 
novel hybrid form works synergistically blending physics based 
mathematical modeling with the most advanced artificial intelligence 
(AI) for optimizing prediction maintenance. First a coupled second 
order differential equations that describe vibration dynamics and 
torque transmission as well as thermal interactions are developed for a 
comprehensive dynamic model of the rotating machinery under 
different operational loads. The physical model answers to what the 
system will behave like and how it should show up based on our 
baseline. At the same time, an AI module based on data, which employs 
a bidirectional long short term memory (BiLSTM) network to learn 
temporal pattern from real time vibration and temperature sensor data, 
is developed in parallel. A co-simulation strategy is used to achieve the 
hybrid model, wherein the outputs from the physical model are used as 
residual inputs for the AI network so that it can detect early anomalies 
and predict failures. The approach proposed is validated through the 
simulation studies and on an industrial real world employment in the 
thermal power plant with the systems of centrifugal pump. 
Experimental results indicate that with substantial improvement in 
fault detection accuracy, remaining useful life prediction and early 
warning capabilities to conventional physics (only) or AI (only) 
methods. The results of this research not only show the superiority of 
hybrid model for predicting the failures of rotating systems for 
predictive maintenance, but this also lays the groundwork for future 
developments of next generation digital twin frameworks for intelligent 
industrial asset management. 
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1. INTRODUCTION 
A large number of rotating machinery, including 
motors, turbines, pumps, fans and compressors are 
essential, powering a broad spectrum of industrial 
systems, being used in manufacturing, energy 
generation, aviation, oil and gas and 
transportation. Such systems tend to work under 
extremely harsh condition, high rotational speeds, 
fluctuating loads and long operating cycles, prone 
to mechanical degradation, thermal stress as well 
as dynamic instabilities. Unplanned downtimes, 
increased operational costs, safety hazards, 
industrial productivity loss, etc can occur in such 
critical equipment. However, modern practices as 
well as industry’s demands for high availability, 
cost efficiency and reliability, make traditional 
maintenance strategies such as reactive and time 

based maintenance becoming increasingly unfit for 
use. With such advantages, and for this reason, 
Predictive Maintenance (PdM) has become a 
provider of a data and model based approach to 
assess the condition of machinery in real time and 
predict when a fault will come before it leads to a 
catastrophic failure. 
However, existing PdM models (physics based and 
AI based) fall into a specific niche of two: physics 
based mathematical and AI based data driven. 
They in turn use deterministic equations based on 
the mechanics, thermodynamics and material 
science, which are physically based but tend to 
have difficulty working with complicated non-
linearities and uncertainties present in 
contemporary environment. On the opposite end, 
data driven AI models like deep learning and 
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ensemble learning algorithms are also good at 
capturing the complex patterns from the sensor 
data, but require millions of labeled data and is 
non generalized and physically not interpretable. 
To solve these challenges, in this research we 
propose a hybrid AI–mathematical model of hybrid 
modeling consisting of the theoretical rigidity of 
physics based modeling and adaptive learning 
power of the artificial intelligence. The proposed 
approach enables robust fault detection, accurate 
remaining useful life prediction, along with early 
anomalies detection in rotating machinery and the 
method integrates analytical equations of motions 
with BiLSTM based time learning network. 
Underlying both is this fusion of domains that 
maintains and improves predictive performance, 
specially suits explainable, scalable, real time and 
Industry 4.0 compatible maintenance systems. 
 
2. LITERATURE REVIEW 
2.1 Mathematical Modeling Approaches for 
Rotating Machinery 
The explanatory basis for understanding and 
predating the behavior of rotating machinery has a 
long mathematical modeling history. Typically, the 
governing equations of motion arising in rigid and 
flexible shaft systems are derived using Newtonian 
or Lagrangian mechanics, which include rotational 
dynamics, unbalance forces, gyroscopic effects and 
damping behavior. Since they are widely used to 
decompose system vibrations into natural modes 
for identifying resonance frequencies and locating 
rotor crack and bearing defect faults, the modal 
analysis techniques have drawn much attention. 
Further, PDEs and time variable boundary 
conditions have also been suggested to simulate 
wear progression, fatigue accumulation and 
imbalance under various operating loads. These 
methods offer strong physical insights, albeit at the 
expense of often low accuracy due to assumptions 
of idealized physical behavior and the challenges 
of modeling complex nonlinearities, parameter 
uncertainties, dynamic environmental influences. 
 
2.2 Artificial Intelligence-Based Approaches 
As various advances in artificial intelligence and 
machine learning have made possible data driven 

approach to predictive maintenance, which is able 
to learn complex relationship from real time 
sensor signals. In order to classify fault types, 
engineered features that may come from vibration 
and thermal data have been applied to techniques 
such as Support Vector Machines (SVM), Decision 
Trees and Random Forests. In recent time, feature 
extraction, temporal pattern recognition are all 
performed more fast with high accuracy by deep 
learning models such as convolutional neural 
network (CNN) and recurrent neural network 
(RNN). Out of these, Long Short Term Memory 
(LSTM) and its bidirectional variant (BiLSTM) have 
demonstrated good effectiveness in time series 
sensor data modeling for remaining useful life 
(RUL) estimation and early anomaly detection. 
These models are indeed good at prediction, 
though their lack of interpretability and 
susceptibility to overfitting (ignoring the datasets’ 
‘limit’ or ‘imbalance’) especially when trained on a 
small or imbalanced dataset. 
 
2.3 Hybrid Modeling Strategies 
Thus, novel approaches on hybrid level have 
evolved as a promising way to overcome 
limitations inherent to standalone modeling 
paradigms. These methods take physics law and 
data driven algorithm together to enable its 
interpretability driven (physics based) constraints 
while retaining the generalizability of machine 
learning. For example, Physics-Informed Neural 
Networks inject differential equation constraints 
into loss functions of neural networks as the 
training ingredients through physical principles. 
Additional residual learning frameworks have 
been proposed based on other studies, where ML 
models are trained on residuals between physical 
model and observed signals to minimize 
discrepancies between simulated and observed 
signals. Hybrid models have often been employed 
to enhance the diagnosis of bearing faults, shaft 
misalignments and the imbalance conditions in 
rotating machinery in presence of variable speed 
and load scenarios. This has improved the fault 
classification accuracy, was robust to noise and 
better generalised to different machine types and 
operating conditions. 

 
Table 1. Comparison of Modeling Approaches for Predictive Maintenance in Rotating Machinery 

Modeling 
Approach 

Core 
Techniques 

Strengths Limitations Proposed 
Advantage 

Mathematical 
Modeling 

Newtonian 
&Lagrangian 
mechanics, 
modal analysis, 
PDEs 

High 
interpretability, 
grounded in 
physics, good for 
design and 
simulation 

Struggles with 
nonlinearities, 
uncertainties, and 
real-world 
variability 

Provides 
foundational 
understanding and 
deterministic fault 
signatures 
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AI-Based 
Approaches 

SVM, Random 
Forest, CNN, 
LSTM, BiLSTM 

Captures complex, 
nonlinear patterns; 
high accuracy in 
RUL and fault 
detection 

Requires large data, 
less interpretable, 
prone to overfitting 

Enables real-time 
prediction and 
adaptability under 
varying operating 
conditions 

Hybrid 
Modeling 
Strategies 

Physics-
Informed Neural 
Networks 
(PINNs), 
residual 
learning, 
ensemble 
frameworks 

Combines physical 
consistency with 
learning flexibility; 
improved 
robustness and 
generalization 

Higher 
implementation 
complexity; 
requires domain 
knowledge and 
system integration 

Achieves high 
accuracy with 
interpretability; 
adaptable, noise-
tolerant, and 
generalizes across 
system variations 

 
3. METHODOLOGY 
3.1. Physical Modeling of Rotating Systems 
Lumped parameter model can represent the 
physical behavior of rotating machinery such as 
shafts, rotors and coupled mechanical components 
well. The first modeling approach discretizes the 
system into a finite set of mass, damping, and 
stiffness elements, which retain the key dynamics 
characteristics while making the computational 
intensive part very efficient. The model is 
especially useful for early stage design, fault 
simulation and condition monitoring applications 
which necessitates a compromise between 
accuracy and simplification. 
The classical second order differential equation is 
the governing equation of motion of the system. 
𝑀𝑥  𝑡 + 𝐶𝑥  𝑡 + 𝐾𝑥 𝑡 = 𝐹 𝑡  
Here: 
 𝑀 ∈ ℝ𝑛×𝑛 is the mass matrix, representing the 

inertia of rotating components distributed 
across nnn degrees of freedom. 

 𝐶 ∈ ℝ𝑛×𝑛  is the damping matrix, which 
accounts for energy dissipation due to 
bearing friction, air resistance, and internal 
material damping. 

 𝐾 ∈ ℝ𝑛×𝑛 is the stiffness matrix, 
characterizing the elastic restoring forces 
resulting from shaft flexibility, structural 
supports, and couplings. 

 𝑥 𝑡 is the displacement vector as a function of 
time, 𝑥  𝑡 and 𝑥  𝑡 represent velocity and 
acceleration, respectively. 

 𝐹 𝑡 is the external force vector, which 
typically includes excitations caused by rotor 
unbalance, gear mesh variations, or external 
mechanical disturbances. 

The lumped parameter model is developed either 
based on Newton’s second law or based on 
Lagrangian mechanics as the system gets 
complicated and appropriate coordinate system is 
selected. For case of a rotor supported by bearings, 
the system can be viewed a set of masses 
(representing the rotor segments), springs 

(stiffness of the shaft and the supports) and 
dampers (a means of representing energy losses). 
Angular coordinates and torsional stiffness may 
also be used for torsional dynamics. 
Such a model is essential for simulation of fault like 
imbalance, misalignment, or loosening in 
predictive maintenance applications. In some 
cases, as an unbalanced rotor, F(t)will produce 
periodic excitation that with system resonance can 
amplify vibrations sensed with the sensors. 
Modeling of the natural frequencies and mode 
shapes of the model can be extracted through 
modal analysis and compared to measured signals 
to find frequencies and mode shapes that deviate 
from the model degrading the system. 
Additionally, the model can be used to integrate 
with AI modules in a hybrid manner. The outputs 
from this physical model simulated, for example 
displacement, velocity and acceleration are 
baseline features or residuals in AI based fault 
classifiers or RUL predictor. In addition to making 
models more interpretable, physically correct 
learned models also guarantee that the learned 
models generalize and are robust to slightly 
varying operational conditions. 
 
3.2. Data Acquisition and Preprocessing 
To create an effective and robust predictive 
maintenance method through the sensor data of 
critical components in rotating equipment 
operating in the industrial conditions, high 
resolution sensor data must be collected. In this 
study, the vibration of velocity and acceleration as 
well as bearing temperature readings are 
continuously monitored via piezoelectric 
accelerometers and thermocouples in the drive 
end, non drive end, and bearing housing locations. 
In order to retain the fine grained dynamic content 
of the rotating system, data acquisition system are 
configured to capture signals at high sampling rate 
(usually 10–50 kHz). From an identification early 
stages of faults, this granularity is quite important 
for micro cracks or bearing defects as they 
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manifest as high frequency spectral components 
that are often obscured at lower sample rates. Raw 
data logging is done along with labeling and 
correlation analysis support using shaft speed, 
load conditions, and maintenance logs. 
The collected raw sensor data goes through a long 
and rigorous preprocessing pipeline to produce 
the features that can be regarded as both reliable 
and ready for machine learning model training. 
They first reduce the noise using bandpass filters 
to eliminate unwanted frequency ranges, for 
instance, 10 Hz to 10 kHz frequency range for any 
mechanical system. Time and frequency domain 
features such as time domain – RMS, peak 
amplitude, skewness and kurtosis and frequency 
domain – FFT, power spectral density and 
envelope spectrum analysis are extracted from the 
cleaned signals. In particular, RMS is ideal for 

measuring the total energy in the signal whereas 
kurtosis responds well to impulsive, such as 
bearing, impacts. A high frequency resonance 
characteristic of localized faults is demodulated by 
envelope spectrum analysis of the fault signal. 
Then all features are normalized so that they have 
consistent scale and do not dominate the neural 
network training when high magnitude variables. 
Then, the feature vector is segmented into sliding 
time windows with overlap for a model to capture 
both short term anomalies and long term 
degradation trends. The preprocessing strategy 
behind this is to prevent the data loaded by the 
hybrid model from being noisy, statistically 
significant, and temporally structured, which are 
key components for accurate anomaly detection 
and estimation of remaining useful life (RUL). 

 

 
Fig 1. Workflow Diagram for Data Acquisition and Preprocessing in Predictive Maintenance of Rotating 

Machinery 
 
3.3. AI-Based Learning Module 
In order to create an accurate and robust 
predictive maintenance framework, sensor data 
having high resolution from critical components of 
rotating machinery operating under realistic 
industrial conditions must be collected. In this 
study, the vibration of velocity and acceleration as 
well as bearing temperature readings are 
continuously monitored via piezoelectric 
accelerometers and thermocouples in the drive 
end, non drive end, and bearing housing locations. 
In order to retain the fine grained dynamic content 
of the rotating system, data acquisition system are 
configured to capture signals at high sampling rate 
(usually 10–50 kHz). In particular, early stage 

faults such as micro cracking or bearing defects 
appearing as high frequency components, which 
are often not captured at lower sampling rates 
remain a crucial item of this granularity. Raw data 
logging is done along with labeling and correlation 
analysis support using shaft speed, load conditions, 
and maintenance logs. 
The collected raw sensor data goes through a long 
and rigorous preprocessing pipeline to produce 
the features that can be regarded as both reliable 
and ready for machine learning model training. 
They first reduce the noise using bandpass filters 
to eliminate unwanted frequency ranges, for 
instance, 10 Hz to 10 kHz frequency range for any 
mechanical system. Time and frequency domain 
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features such as time domain – RMS, peak 
amplitude, skewness and kurtosis and frequency 
domain – FFT, power spectral density and 
envelope spectrum analysis are extracted from the 
cleaned signals. In particular, RMS is ideal for 
measuring the total energy in the signal whereas 
kurtosis responds well to impulsive, such as 
bearing, impacts. A high frequency resonance 
characteristic of localized faults is demodulated by 
envelope spectrum analysis of the fault signal. 
Then all features are normalized so that they have 
consistent scale and do not dominate the neural 

network training when high magnitude variables. 
Then, the feature vector is segmented into sliding 
time windows with overlap for a model to capture 
both short term anomalies and long term 
degradation trends. This preprocessing strategy, 
which preprocesses the input data into a noisy, 
statistically significant and temporally structured 
format, is necessary to guarantee that the data fed 
to the hybrid model are completely noise free and 
useful enough to be accurately used for anomaly 
detection and estimation of RUL. 

 

 
Fig 2. Architecture of the BiLSTM-Based AI Learning Module for Predictive Maintenance 

 
3.4. Model Fusion Strategy 
The proposed hybrid framework realizes its 
essence of bridging physics based and AI based 
models in a recurring, mutually beneficial manner. 
The core of this integration is to take the 
advantage of the particular virtues of both 
paradigms: physics based models with 
interpretability and following fundamental laws of 
dynamics over AI models with adaptiveness and 
high accuracy in pattern recognition within an 
environment of uncertainty and nonlinearity. The 
network is initialized using residuals of the form of 
disagreements between the physical model’s 
simulated outputs and the actual sensor 
measurements. These residuals (i.e., residuals 
from unmodeled dynamics, or parameter drift, or 
operational variability) are treated as high value 
features and fed to the BiLSTM network. This way 
the AI model will be able to concentrate only on 
learning and correcting the real world non ideal 
deviations that the physical model can not map. If, 
for instance, the vibration amplitude is smaller in 
the physical model than in reality because of ad 
hoc damping changes that occur as a result of 
wear, the residual will be highlighting that 
deviation, and the AI model will learn to correlate 
it to progress of the fault. 

The AI module’s predictions are fed back to the 
physical simulation loop in the reverse direction to 
dynamically adjust system parameters of the 
physical simulation loop, such as damping 
coefficients, stiffness values or force inputs. Such 
feedback mechanism is a kind of adaptive 
modeling, where the physical system evolves 
adaptively based on the learned insight, improving 
the long term simulation accuracy. The 
combination of the outputs from both models, 
being either RUL predictions, fault severity scores, 
or dynamic system responses, are then performed 
by a weighted ensemble strategy. The dynamic 
reliability indices are based on calculated 
confidence intervals, residual errors, past 
prediction performance of each model, and 
weights are determined to meet these reliability 
indices. In one instance, its output is given 
increased weight for example when the physical 
model is expected to be accurate under steady 
state conditions. However, in abnormal transients 
or unmodelled condition, the AI model’s prediction 
is prioritized. It enables continuous performance 
optimization, real time fault adaptation and strong 
decision making even when there is data shortage 
or even partially observable situation. Together 
these three strategies—hybrid fusion, high 
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prediction fidelity, and better interpretability, 
reliability, and generalization—lead to a more 

accurate and interpretable result throughout each 
machine type and operating condition. 

 

 
Fig 3. Hybrid Model Fusion Strategy for Predictive Maintenance 

 
4. RESULTS AND DISCUSSION 
4.1. Simulation-Based Fault Evolution 
A series of simulations were done in order to 
validate the physical model component of the 
hybrid framework, simulating common faults in 
rotating equipment, in the case of bearing wear 
and shaft imbalance. Artificially increasing times of 
increasing damping and stiffness values until real 
world mechanical degradation were added in 
progressively deteriorating conditions gradually 
degraded the DSP dynamic system. In real fault 
case, the system shows the high frequency 
vibration components, high kurtosis, and 
amplitude modulation in the envelope spectrum 
due to the bearing wear. The simulations for shaft 
imbalance had a dominant frequency of the 
rotational speed (1× RPM) and increased 
amplitude in the lateral vibration components. A 
time–frequency plot, a spectrogram and an orbit 
diagram could be generated from the model, and 
these fault signatures were observable. It was 
confirmed that small degradations of dynamic 
response can be distinguished by the simulations 
and this further verifies the sensitivity of the 
physical model and further supports that it can act 
as a reliable basis for fault detection and early 
warning diagnostics. 
 
 

4.2. AI Model Accuracy 
A labeled version of the vibration and thermal 
sensor signals collected during the various 
operational and fault conditions were used for 
training and validation of the BiLSTM based 
learning module. The prediction accuracy of the 
resulting AI model retained its useable life (RUL) 
prediction of 93.8% meaning the model could 
predict failure times with great reliability. 
Additionally, the model achieved an F1-score of 
0.89 for fault classification on the different 
categories (normal, misalignment, imbalance, and 
bearing fault) as well, as a precision and recall 
score that is meaningful in imbalanced fault 
datasets. As to be expected, RUL prediction 
accuracy was +17% improved over traditional 
physics-only models. The reason for such a boost is 
explained by biLSTM’s ability to learn complex 
temporal dependencies, as well as nonlinear 
degradation patterns like intermittent vibration 
bursts and fluctuating thermal loads that precede 
mechanical failure. This shows that the result 
obtained from the AI model reveals robust, high-
resolution insight to system performance under 
various conditions where the physical model has 
low sensitivity from simplification or modeling 
error. 
 
4.3. Hybrid vs Standalone Models 

 
Table 2 

Model Type RUL Error (%) F1 Score Training Time (min) 
Physics-Based 21.4 0.72 N/A 
BiLSTM Only 9.6 0.86 54 
Hybrid Proposed 6.2 0.89 65 
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Fig 4. Performance comparison of predictive maintenance models. 

 
5. Case Study: Industrial Deployment 
An industrial case study was conducted on 
centrifugal pump systems that operate in a 
thermal power plant to show how the proposed 
hybrid AI-mathematical framework is practical 
and practical for the real time. Under high pressure 
conditions, these pumps are dynamic faulty, and 
they include: impeller imbalance, bearing 
degradation, and cavitation and are used for boiler 
feed water circulation. In a hybrid model, this was 
deployed as part of the plant’s predictive 
maintenance infrastructure which interwired with 
existing vibration and temperature sensors. For 
three months of monitoring, this system was able 
to analyze in real time a variety of multi channel 
sensor data, and fused BiLSTM driven predictions 
with physical simulation residuals. The model was 
used to identify an abnormal radial vibration 
amplitude and the spectral energy distribution 
associated with early stage impeller imbalance 
during one operational cycle. Finally, it should be 
noted that this anomaly was flagged 72 hours prior 
to the alarm threshold set by conventional 
vibration based monitoring systems, thus offering 
a very important maintenance planning window. 
Upon closer look, maintenance department 
confirmed asymmetric mass distribution on the 
impeller due to fouling buildup — a condition that 
could have caused severe mechanical stress and 
for unintended downtime. The hybrid system 
managed to intervene in a timelier fashion and for 
this demonstrated the model’s responsiveness, 
accuracy, and its value for high stake industrial 
environments, thereby preventing potential 
financial losses. Testing out this deployment was 
not only proof that the theoretical constructs of the 
hybrid model worked, it also proved that the 
hybrid model could serve as an intelligent decision 
support tool in a digital twin ecosystem. 

 
6. CONCLUSION  
The work presents a complete and novel hybrid 
framework which includes physics based 
mathematical modeling and artificial intelligence 
(AI), specifically it is a BiLSTM neural network, for 
the improvement of the predictive maintenance of 
the rotating machinery. The approach successfully 
uses the interpretability and analytical rigor of the 
lumped parameter dynamic models together with 
the adaptability and predictive power of deep 
learning to handle problems of fault diagnosis, 
anomaly detection, and remaining useful life (RUL) 
estimation. The model was found to be able to 
accurately replicate fault evolution as simulated 
through various fault conditions, such as bearing 
wear and shaft imbalance. In the case of the AI 
module, the enriched features included physical 
model residuals and it achieved high classification 
performance as well as precise RUL predictions. It 
was then found that the hybrid model exceeds the 
standalone physics based and data driven models 
in all aspects of accuracy, generalizability, and 
robustness. The deployment of a thermal power 
plant confirmed further the real world efficacy of 
the method, as it allowed successful identification 
of impeller imbalance well before traditional 
methods and thus prevented potential equipment 
failure and downtime. This findings highlight the 
utility of hybrid modeling as a cornerstone to 
intelligent, condition based monitoring system of 
Industry 4.0 environments. For future research, 
this hybrid model will be embedded into typical 
real-time digital twin platforms for providing 
closed loop feedback and between simulations and 
live sensor data. This will also be extended to multi 
component systems, which include gearboxes and 
coupled motor-pump assemblies where complex 
dependence necessitate scalable and modular fault 
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diagnosis. The reinforcement learning for adaptive 
maintenance decision-making in the context of 
uncertainty may help improving further. 
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